Spet Algorithm: Stop and Proximity Episodes in Trajectories

ABSTRACT: In this paper, we propose the SPET (Stop and Proximity Episodes in Trajectories) algorithm to identify stop and proximity episodes in trajectories. A trajectory is the record of the evolution of the position of an object that is moving in space during a given time interval in order to achi...

Full description

Autores:
Moreno Arboleda, Francisco Javier
Castaño, Anderson
de Cos Juez, Francisco Javier
Tipo de recurso:
Article of investigation
Fecha de publicación:
2015
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/34443
Acceso en línea:
https://hdl.handle.net/10495/34443
Palabra clave:
Movimiento
Movement
Integrales de trayectoria
Integrals, path
Proximidad
Proximity
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id UDEA2_7e2332e7a86fd2d896ec1ef2c629331c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/34443
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Spet Algorithm: Stop and Proximity Episodes in Trajectories
title Spet Algorithm: Stop and Proximity Episodes in Trajectories
spellingShingle Spet Algorithm: Stop and Proximity Episodes in Trajectories
Movimiento
Movement
Integrales de trayectoria
Integrals, path
Proximidad
Proximity
title_short Spet Algorithm: Stop and Proximity Episodes in Trajectories
title_full Spet Algorithm: Stop and Proximity Episodes in Trajectories
title_fullStr Spet Algorithm: Stop and Proximity Episodes in Trajectories
title_full_unstemmed Spet Algorithm: Stop and Proximity Episodes in Trajectories
title_sort Spet Algorithm: Stop and Proximity Episodes in Trajectories
dc.creator.fl_str_mv Moreno Arboleda, Francisco Javier
Castaño, Anderson
de Cos Juez, Francisco Javier
dc.contributor.author.none.fl_str_mv Moreno Arboleda, Francisco Javier
Castaño, Anderson
de Cos Juez, Francisco Javier
dc.contributor.researchgroup.spa.fl_str_mv Intelligent Information Systems Lab.
dc.subject.decs.none.fl_str_mv Movimiento
Movement
topic Movimiento
Movement
Integrales de trayectoria
Integrals, path
Proximidad
Proximity
dc.subject.lemb.none.fl_str_mv Integrales de trayectoria
Integrals, path
dc.subject.proposal.spa.fl_str_mv Proximidad
Proximity
description ABSTRACT: In this paper, we propose the SPET (Stop and Proximity Episodes in Trajectories) algorithm to identify stop and proximity episodes in trajectories. A trajectory is the record of the evolution of the position of an object that is moving in space during a given time interval in order to achieve a goal. A stop is an episode of a trajectory during which the object remained continuously inside a point of interest (POI) a minimum time (specified by the business analysts) and a proximity is an episode of a trajectory during which the object remained continuously near a POI a minimum time. These episodes may help to understand the behavior of moving objects in several domains. For example, proximities episodes can help in advertising, where agents can identify appropriate spots in order to try to increase the visibility of certains POIs. In order to prove the feasibility and expediency of our proposal, we conduct a series of experiments with real vehicle trajectories, in neighborhoods (the POIs) of Rio de Janeiro. Our results reveal information that can be useful for traffic analysis about the density of visits and proximities of vehicles to these neighborhoods.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2023-04-04T13:42:20Z
dc.date.available.none.fl_str_mv 2023-04-04T13:42:20Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1935-0090
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/34443
dc.identifier.doi.none.fl_str_mv 10.12785/amis/090202
dc.identifier.eissn.none.fl_str_mv 2325-0399
identifier_str_mv 1935-0090
10.12785/amis/090202
2325-0399
url https://hdl.handle.net/10495/34443
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Appl. Math. Inf. Sci.
dc.relation.citationendpage.spa.fl_str_mv 560
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 549
dc.relation.citationvolume.spa.fl_str_mv 9
dc.relation.ispartofjournal.spa.fl_str_mv Applied Mathematics and Information Sciences
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Natural Sciences Publishing
dc.publisher.place.spa.fl_str_mv Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/d7fb61e6-8da6-44a0-b808-a2883ba79ceb/download
https://bibliotecadigital.udea.edu.co/bitstreams/bf0b5bc4-a01b-48f1-99eb-7dc37202f998/download
https://bibliotecadigital.udea.edu.co/bitstreams/e9b7ee0e-cc94-4ff8-8642-f25ba39e6479/download
https://bibliotecadigital.udea.edu.co/bitstreams/8558a7b6-eb81-4fcb-839d-25d3228aab59/download
https://bibliotecadigital.udea.edu.co/bitstreams/e536611a-fd74-4c54-94e1-e27f55c8a972/download
bitstream.checksum.fl_str_mv d5ff9ea032a3e11d075ef6d8e2685234
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
9b0fb9b17018b35c37fbfc080c212c16
fdf56f3e34d749d203782fa06c5b9a91
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052397439221760
spelling Moreno Arboleda, Francisco JavierCastaño, Andersonde Cos Juez, Francisco JavierIntelligent Information Systems Lab.2023-04-04T13:42:20Z2023-04-04T13:42:20Z20151935-0090https://hdl.handle.net/10495/3444310.12785/amis/0902022325-0399ABSTRACT: In this paper, we propose the SPET (Stop and Proximity Episodes in Trajectories) algorithm to identify stop and proximity episodes in trajectories. A trajectory is the record of the evolution of the position of an object that is moving in space during a given time interval in order to achieve a goal. A stop is an episode of a trajectory during which the object remained continuously inside a point of interest (POI) a minimum time (specified by the business analysts) and a proximity is an episode of a trajectory during which the object remained continuously near a POI a minimum time. These episodes may help to understand the behavior of moving objects in several domains. For example, proximities episodes can help in advertising, where agents can identify appropriate spots in order to try to increase the visibility of certains POIs. In order to prove the feasibility and expediency of our proposal, we conduct a series of experiments with real vehicle trajectories, in neighborhoods (the POIs) of Rio de Janeiro. Our results reveal information that can be useful for traffic analysis about the density of visits and proximities of vehicles to these neighborhoods.COL002593412application/pdfengNatural Sciences PublishingEstados Unidoshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Spet Algorithm: Stop and Proximity Episodes in TrajectoriesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionMovimientoMovementIntegrales de trayectoriaIntegrals, pathProximidadProximityAppl. Math. Inf. Sci.56025499Applied Mathematics and Information SciencesPublicationORIGINALMorenoFrancisco_2015_StopProximityEpisodes.pdfMorenoFrancisco_2015_StopProximityEpisodes.pdfArtículo de investigaciónapplication/pdf648121https://bibliotecadigital.udea.edu.co/bitstreams/d7fb61e6-8da6-44a0-b808-a2883ba79ceb/downloadd5ff9ea032a3e11d075ef6d8e2685234MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/bf0b5bc4-a01b-48f1-99eb-7dc37202f998/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/e9b7ee0e-cc94-4ff8-8642-f25ba39e6479/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMorenoFrancisco_2015_StopProximityEpisodes.pdf.txtMorenoFrancisco_2015_StopProximityEpisodes.pdf.txtExtracted texttext/plain35509https://bibliotecadigital.udea.edu.co/bitstreams/8558a7b6-eb81-4fcb-839d-25d3228aab59/download9b0fb9b17018b35c37fbfc080c212c16MD54falseAnonymousREADTHUMBNAILMorenoFrancisco_2015_StopProximityEpisodes.pdf.jpgMorenoFrancisco_2015_StopProximityEpisodes.pdf.jpgGenerated Thumbnailimage/jpeg16349https://bibliotecadigital.udea.edu.co/bitstreams/e536611a-fd74-4c54-94e1-e27f55c8a972/downloadfdf56f3e34d749d203782fa06c5b9a91MD55falseAnonymousREAD10495/34443oai:bibliotecadigital.udea.edu.co:10495/344432025-03-26 21:39:21.26https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=