Spet Algorithm: Stop and Proximity Episodes in Trajectories
ABSTRACT: In this paper, we propose the SPET (Stop and Proximity Episodes in Trajectories) algorithm to identify stop and proximity episodes in trajectories. A trajectory is the record of the evolution of the position of an object that is moving in space during a given time interval in order to achi...
- Autores:
-
Moreno Arboleda, Francisco Javier
Castaño, Anderson
de Cos Juez, Francisco Javier
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/34443
- Acceso en línea:
- https://hdl.handle.net/10495/34443
- Palabra clave:
- Movimiento
Movement
Integrales de trayectoria
Integrals, path
Proximidad
Proximity
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_7e2332e7a86fd2d896ec1ef2c629331c |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/34443 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Spet Algorithm: Stop and Proximity Episodes in Trajectories |
| title |
Spet Algorithm: Stop and Proximity Episodes in Trajectories |
| spellingShingle |
Spet Algorithm: Stop and Proximity Episodes in Trajectories Movimiento Movement Integrales de trayectoria Integrals, path Proximidad Proximity |
| title_short |
Spet Algorithm: Stop and Proximity Episodes in Trajectories |
| title_full |
Spet Algorithm: Stop and Proximity Episodes in Trajectories |
| title_fullStr |
Spet Algorithm: Stop and Proximity Episodes in Trajectories |
| title_full_unstemmed |
Spet Algorithm: Stop and Proximity Episodes in Trajectories |
| title_sort |
Spet Algorithm: Stop and Proximity Episodes in Trajectories |
| dc.creator.fl_str_mv |
Moreno Arboleda, Francisco Javier Castaño, Anderson de Cos Juez, Francisco Javier |
| dc.contributor.author.none.fl_str_mv |
Moreno Arboleda, Francisco Javier Castaño, Anderson de Cos Juez, Francisco Javier |
| dc.contributor.researchgroup.spa.fl_str_mv |
Intelligent Information Systems Lab. |
| dc.subject.decs.none.fl_str_mv |
Movimiento Movement |
| topic |
Movimiento Movement Integrales de trayectoria Integrals, path Proximidad Proximity |
| dc.subject.lemb.none.fl_str_mv |
Integrales de trayectoria Integrals, path |
| dc.subject.proposal.spa.fl_str_mv |
Proximidad Proximity |
| description |
ABSTRACT: In this paper, we propose the SPET (Stop and Proximity Episodes in Trajectories) algorithm to identify stop and proximity episodes in trajectories. A trajectory is the record of the evolution of the position of an object that is moving in space during a given time interval in order to achieve a goal. A stop is an episode of a trajectory during which the object remained continuously inside a point of interest (POI) a minimum time (specified by the business analysts) and a proximity is an episode of a trajectory during which the object remained continuously near a POI a minimum time. These episodes may help to understand the behavior of moving objects in several domains. For example, proximities episodes can help in advertising, where agents can identify appropriate spots in order to try to increase the visibility of certains POIs. In order to prove the feasibility and expediency of our proposal, we conduct a series of experiments with real vehicle trajectories, in neighborhoods (the POIs) of Rio de Janeiro. Our results reveal information that can be useful for traffic analysis about the density of visits and proximities of vehicles to these neighborhoods. |
| publishDate |
2015 |
| dc.date.issued.none.fl_str_mv |
2015 |
| dc.date.accessioned.none.fl_str_mv |
2023-04-04T13:42:20Z |
| dc.date.available.none.fl_str_mv |
2023-04-04T13:42:20Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
1935-0090 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/34443 |
| dc.identifier.doi.none.fl_str_mv |
10.12785/amis/090202 |
| dc.identifier.eissn.none.fl_str_mv |
2325-0399 |
| identifier_str_mv |
1935-0090 10.12785/amis/090202 2325-0399 |
| url |
https://hdl.handle.net/10495/34443 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Appl. Math. Inf. Sci. |
| dc.relation.citationendpage.spa.fl_str_mv |
560 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.spa.fl_str_mv |
549 |
| dc.relation.citationvolume.spa.fl_str_mv |
9 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Applied Mathematics and Information Sciences |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
12 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Natural Sciences Publishing |
| dc.publisher.place.spa.fl_str_mv |
Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/d7fb61e6-8da6-44a0-b808-a2883ba79ceb/download https://bibliotecadigital.udea.edu.co/bitstreams/bf0b5bc4-a01b-48f1-99eb-7dc37202f998/download https://bibliotecadigital.udea.edu.co/bitstreams/e9b7ee0e-cc94-4ff8-8642-f25ba39e6479/download https://bibliotecadigital.udea.edu.co/bitstreams/8558a7b6-eb81-4fcb-839d-25d3228aab59/download https://bibliotecadigital.udea.edu.co/bitstreams/e536611a-fd74-4c54-94e1-e27f55c8a972/download |
| bitstream.checksum.fl_str_mv |
d5ff9ea032a3e11d075ef6d8e2685234 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 9b0fb9b17018b35c37fbfc080c212c16 fdf56f3e34d749d203782fa06c5b9a91 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052397439221760 |
| spelling |
Moreno Arboleda, Francisco JavierCastaño, Andersonde Cos Juez, Francisco JavierIntelligent Information Systems Lab.2023-04-04T13:42:20Z2023-04-04T13:42:20Z20151935-0090https://hdl.handle.net/10495/3444310.12785/amis/0902022325-0399ABSTRACT: In this paper, we propose the SPET (Stop and Proximity Episodes in Trajectories) algorithm to identify stop and proximity episodes in trajectories. A trajectory is the record of the evolution of the position of an object that is moving in space during a given time interval in order to achieve a goal. A stop is an episode of a trajectory during which the object remained continuously inside a point of interest (POI) a minimum time (specified by the business analysts) and a proximity is an episode of a trajectory during which the object remained continuously near a POI a minimum time. These episodes may help to understand the behavior of moving objects in several domains. For example, proximities episodes can help in advertising, where agents can identify appropriate spots in order to try to increase the visibility of certains POIs. In order to prove the feasibility and expediency of our proposal, we conduct a series of experiments with real vehicle trajectories, in neighborhoods (the POIs) of Rio de Janeiro. Our results reveal information that can be useful for traffic analysis about the density of visits and proximities of vehicles to these neighborhoods.COL002593412application/pdfengNatural Sciences PublishingEstados Unidoshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Spet Algorithm: Stop and Proximity Episodes in TrajectoriesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionMovimientoMovementIntegrales de trayectoriaIntegrals, pathProximidadProximityAppl. Math. Inf. Sci.56025499Applied Mathematics and Information SciencesPublicationORIGINALMorenoFrancisco_2015_StopProximityEpisodes.pdfMorenoFrancisco_2015_StopProximityEpisodes.pdfArtículo de investigaciónapplication/pdf648121https://bibliotecadigital.udea.edu.co/bitstreams/d7fb61e6-8da6-44a0-b808-a2883ba79ceb/downloadd5ff9ea032a3e11d075ef6d8e2685234MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/bf0b5bc4-a01b-48f1-99eb-7dc37202f998/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/e9b7ee0e-cc94-4ff8-8642-f25ba39e6479/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMorenoFrancisco_2015_StopProximityEpisodes.pdf.txtMorenoFrancisco_2015_StopProximityEpisodes.pdf.txtExtracted texttext/plain35509https://bibliotecadigital.udea.edu.co/bitstreams/8558a7b6-eb81-4fcb-839d-25d3228aab59/download9b0fb9b17018b35c37fbfc080c212c16MD54falseAnonymousREADTHUMBNAILMorenoFrancisco_2015_StopProximityEpisodes.pdf.jpgMorenoFrancisco_2015_StopProximityEpisodes.pdf.jpgGenerated Thumbnailimage/jpeg16349https://bibliotecadigital.udea.edu.co/bitstreams/e536611a-fd74-4c54-94e1-e27f55c8a972/downloadfdf56f3e34d749d203782fa06c5b9a91MD55falseAnonymousREAD10495/34443oai:bibliotecadigital.udea.edu.co:10495/344432025-03-26 21:39:21.26https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
