The Higher-Order Matching Polynomial of a Graph
ABSTRACT: Given a graph G with n vertices, let p(G, j) denote the number of ways j mutually nonincident edges can be selected in G. The polynomial M(x) = [n/2] j=0 (−1)j p(G, j)xn−2j, called the matching polynomial of G, is closely related to the Hosoya index introduced in applications in physics an...
- Autores:
-
Estrada Valdés, Mario
Rada Rincón, Juan Pablo
Morales, Daniel A.
Araujo García, Oswaldo Rafael
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2005
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/44331
- Acceso en línea:
- https://hdl.handle.net/10495/44331
- Palabra clave:
- Polinomios
Polynomials
Funciones hipergeométricas
Functions, hypergeometric
Álgebra
Algebra
Índice de Hosoya
Polinomio de orden superior
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_7d05fc01b4354a5757ce959f073d4242 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/44331 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
The Higher-Order Matching Polynomial of a Graph |
| title |
The Higher-Order Matching Polynomial of a Graph |
| spellingShingle |
The Higher-Order Matching Polynomial of a Graph Polinomios Polynomials Funciones hipergeométricas Functions, hypergeometric Álgebra Algebra Índice de Hosoya Polinomio de orden superior |
| title_short |
The Higher-Order Matching Polynomial of a Graph |
| title_full |
The Higher-Order Matching Polynomial of a Graph |
| title_fullStr |
The Higher-Order Matching Polynomial of a Graph |
| title_full_unstemmed |
The Higher-Order Matching Polynomial of a Graph |
| title_sort |
The Higher-Order Matching Polynomial of a Graph |
| dc.creator.fl_str_mv |
Estrada Valdés, Mario Rada Rincón, Juan Pablo Morales, Daniel A. Araujo García, Oswaldo Rafael |
| dc.contributor.author.none.fl_str_mv |
Estrada Valdés, Mario Rada Rincón, Juan Pablo Morales, Daniel A. Araujo García, Oswaldo Rafael |
| dc.contributor.researchgroup.spa.fl_str_mv |
Álgebra, Teoría de Números y Aplicaciones: ERM Álgebra U de A |
| dc.subject.lemb.none.fl_str_mv |
Polinomios Polynomials Funciones hipergeométricas Functions, hypergeometric Álgebra Algebra |
| topic |
Polinomios Polynomials Funciones hipergeométricas Functions, hypergeometric Álgebra Algebra Índice de Hosoya Polinomio de orden superior |
| dc.subject.proposal.spa.fl_str_mv |
Índice de Hosoya Polinomio de orden superior |
| description |
ABSTRACT: Given a graph G with n vertices, let p(G, j) denote the number of ways j mutually nonincident edges can be selected in G. The polynomial M(x) = [n/2] j=0 (−1)j p(G, j)xn−2j, called the matching polynomial of G, is closely related to the Hosoya index introduced in applications in physics and chemistry. In this work we generalize this polynomial by introducing the number of disjoint paths of length t, denoted by pt(G, j). We compare this higher-order matching polynomial with the usual one, establishing similarities and differences. Some interesting examples are given. Finally, connections between our generalized matching polynomial and hypergeometric functions are found. |
| publishDate |
2005 |
| dc.date.issued.none.fl_str_mv |
2005 |
| dc.date.accessioned.none.fl_str_mv |
2025-01-23T14:07:52Z |
| dc.date.available.none.fl_str_mv |
2025-01-23T14:07:52Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0161-1712 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/44331 |
| dc.identifier.doi.none.fl_str_mv |
10.1155/IJMMS.2005.1565 |
| dc.identifier.eissn.none.fl_str_mv |
1687-0425 |
| identifier_str_mv |
0161-1712 10.1155/IJMMS.2005.1565 1687-0425 |
| url |
https://hdl.handle.net/10495/44331 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Int. J. Math. Math. Sci. |
| dc.relation.citationendpage.spa.fl_str_mv |
13 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
2005 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
International Journal of Mathematics and Mathematical Sciences |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
13 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Hindawi |
| dc.publisher.place.spa.fl_str_mv |
Nueva York, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/15bf1d31-b043-4b37-956a-9973b733b769/download https://bibliotecadigital.udea.edu.co/bitstreams/29df7863-d416-443b-af03-b89b5c8ec708/download https://bibliotecadigital.udea.edu.co/bitstreams/ae37d457-438f-4348-97cd-9fbf45ae799d/download https://bibliotecadigital.udea.edu.co/bitstreams/4741bb5b-09fd-47f4-894e-48aa18ad58db/download https://bibliotecadigital.udea.edu.co/bitstreams/e8da1aaa-bc55-4ddc-8a09-1ead05b9542e/download |
| bitstream.checksum.fl_str_mv |
637b935cc055547792b03d7f6405b267 1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 b921c5025bee959e417adcfe0a8d4eb6 08ff86ac8b11bd9f6f637029570499d6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052121320849408 |
| spelling |
Estrada Valdés, MarioRada Rincón, Juan PabloMorales, Daniel A.Araujo García, Oswaldo RafaelÁlgebra, Teoría de Números y Aplicaciones: ERMÁlgebra U de A2025-01-23T14:07:52Z2025-01-23T14:07:52Z20050161-1712https://hdl.handle.net/10495/4433110.1155/IJMMS.2005.15651687-0425ABSTRACT: Given a graph G with n vertices, let p(G, j) denote the number of ways j mutually nonincident edges can be selected in G. The polynomial M(x) = [n/2] j=0 (−1)j p(G, j)xn−2j, called the matching polynomial of G, is closely related to the Hosoya index introduced in applications in physics and chemistry. In this work we generalize this polynomial by introducing the number of disjoint paths of length t, denoted by pt(G, j). We compare this higher-order matching polynomial with the usual one, establishing similarities and differences. Some interesting examples are given. Finally, connections between our generalized matching polynomial and hypergeometric functions are found.COL0017217COL008689613 páginasapplication/pdfengHindawiNueva York, Estados Unidoshttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2The Higher-Order Matching Polynomial of a GraphArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPolinomiosPolynomialsFunciones hipergeométricasFunctions, hypergeometricÁlgebraAlgebraÍndice de HosoyaPolinomio de orden superiorInt. J. Math. Math. Sci.1312005International Journal of Mathematics and Mathematical SciencesPublicationORIGINALEstradaMario_2005_Higher_Order_Polynomial.pdfEstradaMario_2005_Higher_Order_Polynomial.pdfArtículo de investigaciónapplication/pdf1942292https://bibliotecadigital.udea.edu.co/bitstreams/15bf1d31-b043-4b37-956a-9973b733b769/download637b935cc055547792b03d7f6405b267MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/29df7863-d416-443b-af03-b89b5c8ec708/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/ae37d457-438f-4348-97cd-9fbf45ae799d/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTEstradaMario_2005_Higher_Order_Polynomial.pdf.txtEstradaMario_2005_Higher_Order_Polynomial.pdf.txtExtracted texttext/plain25359https://bibliotecadigital.udea.edu.co/bitstreams/4741bb5b-09fd-47f4-894e-48aa18ad58db/downloadb921c5025bee959e417adcfe0a8d4eb6MD58falseAnonymousREADTHUMBNAILEstradaMario_2005_Higher_Order_Polynomial.pdf.jpgEstradaMario_2005_Higher_Order_Polynomial.pdf.jpgGenerated Thumbnailimage/jpeg10248https://bibliotecadigital.udea.edu.co/bitstreams/e8da1aaa-bc55-4ddc-8a09-1ead05b9542e/download08ff86ac8b11bd9f6f637029570499d6MD59falseAnonymousREAD10495/44331oai:bibliotecadigital.udea.edu.co:10495/443312025-03-26 17:17:20.501http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
