The Higher-Order Matching Polynomial of a Graph

ABSTRACT: Given a graph G with n vertices, let p(G, j) denote the number of ways j mutually nonincident edges can be selected in G. The polynomial M(x) = [n/2] j=0 (−1)j p(G, j)xn−2j, called the matching polynomial of G, is closely related to the Hosoya index introduced in applications in physics an...

Full description

Autores:
Estrada Valdés, Mario
Rada Rincón, Juan Pablo
Morales, Daniel A.
Araujo García, Oswaldo Rafael
Tipo de recurso:
Article of investigation
Fecha de publicación:
2005
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/44331
Acceso en línea:
https://hdl.handle.net/10495/44331
Palabra clave:
Polinomios
Polynomials
Funciones hipergeométricas
Functions, hypergeometric
Álgebra
Algebra
Índice de Hosoya
Polinomio de orden superior
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_7d05fc01b4354a5757ce959f073d4242
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/44331
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv The Higher-Order Matching Polynomial of a Graph
title The Higher-Order Matching Polynomial of a Graph
spellingShingle The Higher-Order Matching Polynomial of a Graph
Polinomios
Polynomials
Funciones hipergeométricas
Functions, hypergeometric
Álgebra
Algebra
Índice de Hosoya
Polinomio de orden superior
title_short The Higher-Order Matching Polynomial of a Graph
title_full The Higher-Order Matching Polynomial of a Graph
title_fullStr The Higher-Order Matching Polynomial of a Graph
title_full_unstemmed The Higher-Order Matching Polynomial of a Graph
title_sort The Higher-Order Matching Polynomial of a Graph
dc.creator.fl_str_mv Estrada Valdés, Mario
Rada Rincón, Juan Pablo
Morales, Daniel A.
Araujo García, Oswaldo Rafael
dc.contributor.author.none.fl_str_mv Estrada Valdés, Mario
Rada Rincón, Juan Pablo
Morales, Daniel A.
Araujo García, Oswaldo Rafael
dc.contributor.researchgroup.spa.fl_str_mv Álgebra, Teoría de Números y Aplicaciones: ERM
Álgebra U de A
dc.subject.lemb.none.fl_str_mv Polinomios
Polynomials
Funciones hipergeométricas
Functions, hypergeometric
Álgebra
Algebra
topic Polinomios
Polynomials
Funciones hipergeométricas
Functions, hypergeometric
Álgebra
Algebra
Índice de Hosoya
Polinomio de orden superior
dc.subject.proposal.spa.fl_str_mv Índice de Hosoya
Polinomio de orden superior
description ABSTRACT: Given a graph G with n vertices, let p(G, j) denote the number of ways j mutually nonincident edges can be selected in G. The polynomial M(x) = [n/2] j=0 (−1)j p(G, j)xn−2j, called the matching polynomial of G, is closely related to the Hosoya index introduced in applications in physics and chemistry. In this work we generalize this polynomial by introducing the number of disjoint paths of length t, denoted by pt(G, j). We compare this higher-order matching polynomial with the usual one, establishing similarities and differences. Some interesting examples are given. Finally, connections between our generalized matching polynomial and hypergeometric functions are found.
publishDate 2005
dc.date.issued.none.fl_str_mv 2005
dc.date.accessioned.none.fl_str_mv 2025-01-23T14:07:52Z
dc.date.available.none.fl_str_mv 2025-01-23T14:07:52Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0161-1712
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/44331
dc.identifier.doi.none.fl_str_mv 10.1155/IJMMS.2005.1565
dc.identifier.eissn.none.fl_str_mv 1687-0425
identifier_str_mv 0161-1712
10.1155/IJMMS.2005.1565
1687-0425
url https://hdl.handle.net/10495/44331
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Int. J. Math. Math. Sci.
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 2005
dc.relation.ispartofjournal.spa.fl_str_mv International Journal of Mathematics and Mathematical Sciences
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Hindawi
dc.publisher.place.spa.fl_str_mv Nueva York, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/15bf1d31-b043-4b37-956a-9973b733b769/download
https://bibliotecadigital.udea.edu.co/bitstreams/29df7863-d416-443b-af03-b89b5c8ec708/download
https://bibliotecadigital.udea.edu.co/bitstreams/ae37d457-438f-4348-97cd-9fbf45ae799d/download
https://bibliotecadigital.udea.edu.co/bitstreams/4741bb5b-09fd-47f4-894e-48aa18ad58db/download
https://bibliotecadigital.udea.edu.co/bitstreams/e8da1aaa-bc55-4ddc-8a09-1ead05b9542e/download
bitstream.checksum.fl_str_mv 637b935cc055547792b03d7f6405b267
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
b921c5025bee959e417adcfe0a8d4eb6
08ff86ac8b11bd9f6f637029570499d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052121320849408
spelling Estrada Valdés, MarioRada Rincón, Juan PabloMorales, Daniel A.Araujo García, Oswaldo RafaelÁlgebra, Teoría de Números y Aplicaciones: ERMÁlgebra U de A2025-01-23T14:07:52Z2025-01-23T14:07:52Z20050161-1712https://hdl.handle.net/10495/4433110.1155/IJMMS.2005.15651687-0425ABSTRACT: Given a graph G with n vertices, let p(G, j) denote the number of ways j mutually nonincident edges can be selected in G. The polynomial M(x) = [n/2] j=0 (−1)j p(G, j)xn−2j, called the matching polynomial of G, is closely related to the Hosoya index introduced in applications in physics and chemistry. In this work we generalize this polynomial by introducing the number of disjoint paths of length t, denoted by pt(G, j). We compare this higher-order matching polynomial with the usual one, establishing similarities and differences. Some interesting examples are given. Finally, connections between our generalized matching polynomial and hypergeometric functions are found.COL0017217COL008689613 páginasapplication/pdfengHindawiNueva York, Estados Unidoshttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2The Higher-Order Matching Polynomial of a GraphArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPolinomiosPolynomialsFunciones hipergeométricasFunctions, hypergeometricÁlgebraAlgebraÍndice de HosoyaPolinomio de orden superiorInt. J. Math. Math. Sci.1312005International Journal of Mathematics and Mathematical SciencesPublicationORIGINALEstradaMario_2005_Higher_Order_Polynomial.pdfEstradaMario_2005_Higher_Order_Polynomial.pdfArtículo de investigaciónapplication/pdf1942292https://bibliotecadigital.udea.edu.co/bitstreams/15bf1d31-b043-4b37-956a-9973b733b769/download637b935cc055547792b03d7f6405b267MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/29df7863-d416-443b-af03-b89b5c8ec708/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/ae37d457-438f-4348-97cd-9fbf45ae799d/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTEstradaMario_2005_Higher_Order_Polynomial.pdf.txtEstradaMario_2005_Higher_Order_Polynomial.pdf.txtExtracted texttext/plain25359https://bibliotecadigital.udea.edu.co/bitstreams/4741bb5b-09fd-47f4-894e-48aa18ad58db/downloadb921c5025bee959e417adcfe0a8d4eb6MD58falseAnonymousREADTHUMBNAILEstradaMario_2005_Higher_Order_Polynomial.pdf.jpgEstradaMario_2005_Higher_Order_Polynomial.pdf.jpgGenerated Thumbnailimage/jpeg10248https://bibliotecadigital.udea.edu.co/bitstreams/e8da1aaa-bc55-4ddc-8a09-1ead05b9542e/download08ff86ac8b11bd9f6f637029570499d6MD59falseAnonymousREAD10495/44331oai:bibliotecadigital.udea.edu.co:10495/443312025-03-26 17:17:20.501http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=