Electrochemical nanosensors in therapeutic pharmaceutical monitoring: from drug following to clinical protocols

Therapeutic monitoring (TDM) combines the quantification of drug concentrations in the blood, pharmacological interpretation, and treatment guidance, introducing a valuable tool in precision medicine. However, quantifying drug concentrations requires expensive techniques, specialized laboratories, a...

Full description

Autores:
Fernández Culma, Maritza
Orozco Holguín, Jahir
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46316
Acceso en línea:
https://hdl.handle.net/10495/46316
Palabra clave:
Electrochemical sensors
Sensores electroquímicos
Medical protocols
Protocolos médicos
Medicamentos - Efectos secundarios
Drugs - Side effects
Preparaciones Farmacéuticas
Pharmaceutical Preparations
Dosificación
Dosage
Tecnología Farmacéutica
Technology, Pharmaceutical
http://id.loc.gov/authorities/subjects/sh88002113
http://id.loc.gov/authorities/subjects/sh85083005
http://id.loc.gov/authorities/subjects/sh85039746
https://id.nlm.nih.gov/mesh/D004364
https://id.nlm.nih.gov/mesh/D013678
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:Therapeutic monitoring (TDM) combines the quantification of drug concentrations in the blood, pharmacological interpretation, and treatment guidance, introducing a valuable tool in precision medicine. However, quantifying drug concentrations requires expensive techniques, specialized laboratories, and trained personnel. A plausible alternative to solve this limitation is quantifying pharmaceutical compounds using nanosensors. This review starts by describing the standard methodology used in TDM to emphasize further how to explore electrochemical nanosensors for this purpose. It points out the advantages of electrochemical nanosensors compared to conventional methodologies based on their analytical features, potential for point-of-care applications, fast response, miniaturization, convenient operation, and portability. The review concludes by summarizing the patented work and discussing important points to consider in developing electrochemical nanosensors in clinical settings, as well as challenges and gaps that must be filled to introduce such new technological innovations in TDM and personalized therapy.