Product of independent inverted hypergeometric function type I variables

ABSTRACT: The inverted hypergeometric function type I distribution has the probability density function proportional to xν−1(1 + x)−(ν+γ)2F1(α, β; γ; (1 + x)−1), x > 0 , where 2F1 is the Gauss hypergeometric function. In this article, we derive the probability density function of the product of t...

Full description

Autores:
Zarrazola Rivera, Edwin de Jesús
Nagar, Daya Krishna
Tipo de recurso:
Article of investigation
Fecha de publicación:
2009
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39813
Acceso en línea:
https://hdl.handle.net/10495/39813
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57
Palabra clave:
Variables aleatorias
Random variables
Funciones hipergeométricas
Hypergeometric functions
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_79cfc3d1d9dbc63ee96ad6305f9c67ac
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/39813
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Product of independent inverted hypergeometric function type I variables
title Product of independent inverted hypergeometric function type I variables
spellingShingle Product of independent inverted hypergeometric function type I variables
Variables aleatorias
Random variables
Funciones hipergeométricas
Hypergeometric functions
title_short Product of independent inverted hypergeometric function type I variables
title_full Product of independent inverted hypergeometric function type I variables
title_fullStr Product of independent inverted hypergeometric function type I variables
title_full_unstemmed Product of independent inverted hypergeometric function type I variables
title_sort Product of independent inverted hypergeometric function type I variables
dc.creator.fl_str_mv Zarrazola Rivera, Edwin de Jesús
Nagar, Daya Krishna
dc.contributor.author.none.fl_str_mv Zarrazola Rivera, Edwin de Jesús
Nagar, Daya Krishna
dc.contributor.researchgroup.spa.fl_str_mv Análisis Multivariado
dc.subject.lemb.none.fl_str_mv Variables aleatorias
Random variables
Funciones hipergeométricas
Hypergeometric functions
topic Variables aleatorias
Random variables
Funciones hipergeométricas
Hypergeometric functions
description ABSTRACT: The inverted hypergeometric function type I distribution has the probability density function proportional to xν−1(1 + x)−(ν+γ)2F1(α, β; γ; (1 + x)−1), x > 0 , where 2F1 is the Gauss hypergeometric function. In this article, we derive the probability density function of the product of two independent random variables having inverted hypergeometric function type I distribution. We also consider several other products involving inverted hypergeometric function type I, beta type I, beta type II, beta type III, Kummer–beta and hypergeometric function type I variables.
publishDate 2009
dc.date.issued.none.fl_str_mv 2009
dc.date.accessioned.none.fl_str_mv 2024-06-09T12:48:54Z
dc.date.available.none.fl_str_mv 2024-06-09T12:48:54Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Zarrazola, E., & Nagar, D. K. (2009). Product of independent random variables involving inverted hypergeometric function type I variables. Ingeniería Y Ciencia, 5(10), 93–106. Retrieved from https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57
dc.identifier.issn.none.fl_str_mv 1794-9165
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/39813
dc.identifier.eissn.none.fl_str_mv 2256-4314
dc.identifier.url.spa.fl_str_mv https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57
identifier_str_mv Zarrazola, E., & Nagar, D. K. (2009). Product of independent random variables involving inverted hypergeometric function type I variables. Ingeniería Y Ciencia, 5(10), 93–106. Retrieved from https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57
1794-9165
2256-4314
url https://hdl.handle.net/10495/39813
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Ing. Cienc.
dc.relation.citationendpage.spa.fl_str_mv 106
dc.relation.citationissue.spa.fl_str_mv 10
dc.relation.citationstartpage.spa.fl_str_mv 93
dc.relation.citationvolume.spa.fl_str_mv 5
dc.relation.ispartofjournal.spa.fl_str_mv Ingeniería y Ciencia
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad EAFIT, Escuelas de Ciencias e Ingeniería
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/46551318-b4f4-4d74-bb5e-7b48b850e1e7/download
https://bibliotecadigital.udea.edu.co/bitstreams/ba0f604e-7435-4166-9cdd-45d87aea9729/download
https://bibliotecadigital.udea.edu.co/bitstreams/eda0889f-5fd2-4603-9641-0645a35941e7/download
https://bibliotecadigital.udea.edu.co/bitstreams/b5d2f74a-60c5-488e-b21a-1b0466e0d79a/download
https://bibliotecadigital.udea.edu.co/bitstreams/523bc789-90f3-4188-a688-45010322c532/download
bitstream.checksum.fl_str_mv 73453b5233e4f2fe583822582e719979
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
56b786c3ab4ce95cace30ad1626ffeeb
57e6639dc79b779c81a4ec4bd609fe45
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052509664116736
spelling Zarrazola Rivera, Edwin de JesúsNagar, Daya KrishnaAnálisis Multivariado2024-06-09T12:48:54Z2024-06-09T12:48:54Z2009Zarrazola, E., & Nagar, D. K. (2009). Product of independent random variables involving inverted hypergeometric function type I variables. Ingeniería Y Ciencia, 5(10), 93–106. Retrieved from https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/571794-9165https://hdl.handle.net/10495/398132256-4314https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57ABSTRACT: The inverted hypergeometric function type I distribution has the probability density function proportional to xν−1(1 + x)−(ν+γ)2F1(α, β; γ; (1 + x)−1), x > 0 , where 2F1 is the Gauss hypergeometric function. In this article, we derive the probability density function of the product of two independent random variables having inverted hypergeometric function type I distribution. We also consider several other products involving inverted hypergeometric function type I, beta type I, beta type II, beta type III, Kummer–beta and hypergeometric function type I variables.COL000053214 páginasapplication/pdfengUniversidad EAFIT, Escuelas de Ciencias e IngenieríaMedellín, Colombiahttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Product of independent inverted hypergeometric function type I variablesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionVariables aleatoriasRandom variablesFunciones hipergeométricasHypergeometric functionsIng. Cienc.10610935Ingeniería y CienciaPublicationORIGINALZarrazolaEdwin_2009_ ProductIndependentInverted.pdfZarrazolaEdwin_2009_ ProductIndependentInverted.pdfArtículo de investigaciónapplication/pdf1851281https://bibliotecadigital.udea.edu.co/bitstreams/46551318-b4f4-4d74-bb5e-7b48b850e1e7/download73453b5233e4f2fe583822582e719979MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/ba0f604e-7435-4166-9cdd-45d87aea9729/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/eda0889f-5fd2-4603-9641-0645a35941e7/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTZarrazolaEdwin_2009_ ProductIndependentInverted.pdf.txtZarrazolaEdwin_2009_ ProductIndependentInverted.pdf.txtExtracted texttext/plain28https://bibliotecadigital.udea.edu.co/bitstreams/b5d2f74a-60c5-488e-b21a-1b0466e0d79a/download56b786c3ab4ce95cace30ad1626ffeebMD54falseAnonymousREADTHUMBNAILZarrazolaEdwin_2009_ ProductIndependentInverted.pdf.jpgZarrazolaEdwin_2009_ ProductIndependentInverted.pdf.jpgGenerated Thumbnailimage/jpeg9077https://bibliotecadigital.udea.edu.co/bitstreams/523bc789-90f3-4188-a688-45010322c532/download57e6639dc79b779c81a4ec4bd609fe45MD55falseAnonymousREAD10495/39813oai:bibliotecadigital.udea.edu.co:10495/398132025-03-26 23:33:12.392https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=