Product of independent inverted hypergeometric function type I variables
ABSTRACT: The inverted hypergeometric function type I distribution has the probability density function proportional to xν−1(1 + x)−(ν+γ)2F1(α, β; γ; (1 + x)−1), x > 0 , where 2F1 is the Gauss hypergeometric function. In this article, we derive the probability density function of the product of t...
- Autores:
-
Zarrazola Rivera, Edwin de Jesús
Nagar, Daya Krishna
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2009
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/39813
- Acceso en línea:
- https://hdl.handle.net/10495/39813
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57
- Palabra clave:
- Variables aleatorias
Random variables
Funciones hipergeométricas
Hypergeometric functions
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
| Summary: | ABSTRACT: The inverted hypergeometric function type I distribution has the probability density function proportional to xν−1(1 + x)−(ν+γ)2F1(α, β; γ; (1 + x)−1), x > 0 , where 2F1 is the Gauss hypergeometric function. In this article, we derive the probability density function of the product of two independent random variables having inverted hypergeometric function type I distribution. We also consider several other products involving inverted hypergeometric function type I, beta type I, beta type II, beta type III, Kummer–beta and hypergeometric function type I variables. |
|---|
