Product of independent inverted hypergeometric function type I variables

ABSTRACT: The inverted hypergeometric function type I distribution has the probability density function proportional to xν−1(1 + x)−(ν+γ)2F1(α, β; γ; (1 + x)−1), x > 0 , where 2F1 is the Gauss hypergeometric function. In this article, we derive the probability density function of the product of t...

Full description

Autores:
Zarrazola Rivera, Edwin de Jesús
Nagar, Daya Krishna
Tipo de recurso:
Article of investigation
Fecha de publicación:
2009
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39813
Acceso en línea:
https://hdl.handle.net/10495/39813
https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/57
Palabra clave:
Variables aleatorias
Random variables
Funciones hipergeométricas
Hypergeometric functions
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
Description
Summary:ABSTRACT: The inverted hypergeometric function type I distribution has the probability density function proportional to xν−1(1 + x)−(ν+γ)2F1(α, β; γ; (1 + x)−1), x > 0 , where 2F1 is the Gauss hypergeometric function. In this article, we derive the probability density function of the product of two independent random variables having inverted hypergeometric function type I distribution. We also consider several other products involving inverted hypergeometric function type I, beta type I, beta type II, beta type III, Kummer–beta and hypergeometric function type I variables.