Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con infección sintomática de tracto urinario adquirida en la comunidad : revisión sistemática de la literatura
Introducción: El uso excesivo de antibióticos de amplio espectro es una causa clave de resistencia antimicrobiana (RAM), asociada a alta morbilidad, mortalidad y costos sanitarios. Los modelos de predicción de RAM, basados en características clínicas del paciente, pueden guiar la terapia empírica y...
- Autores:
-
Morales Chaverra, Juan Pablo
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/46125
- Acceso en línea:
- https://hdl.handle.net/10495/46125
- Palabra clave:
- Farmacorresistencia microbiana
Drug resistance, microbial
Infecciones urinarias
Urinary tract infections
Infecciones comunitarias adquiridas
Community-acquired infections
Métodos de predicción automáticos
Prediction methods, machine
Programas de optimización del uso de los antimicrobianos
Antimicrobial stewardship
Revisión sistemática
Systematic review
Terapia antibiótica empírica
https://id.nlm.nih.gov/mesh/D004352
https://id.nlm.nih.gov/mesh/D014552
https://id.nlm.nih.gov/mesh/D017714
https://id.nlm.nih.gov/mesh/D000098411
https://id.nlm.nih.gov/mesh/D000073602
https://id.nlm.nih.gov/mesh/D000078182
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_7939b40a215a6c797668d60c9b90e5e9 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/46125 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con infección sintomática de tracto urinario adquirida en la comunidad : revisión sistemática de la literatura |
| dc.title.translated.none.fl_str_mv |
Diagnostic Prediction Models of Antimicrobial Resistance to Guide Empirical Antibiotic Therapy Selection in Patients with Community-Acquired Symptomatic Urinary Tract Infection : A Systematic Literature Review |
| title |
Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con infección sintomática de tracto urinario adquirida en la comunidad : revisión sistemática de la literatura |
| spellingShingle |
Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con infección sintomática de tracto urinario adquirida en la comunidad : revisión sistemática de la literatura Farmacorresistencia microbiana Drug resistance, microbial Infecciones urinarias Urinary tract infections Infecciones comunitarias adquiridas Community-acquired infections Métodos de predicción automáticos Prediction methods, machine Programas de optimización del uso de los antimicrobianos Antimicrobial stewardship Revisión sistemática Systematic review Terapia antibiótica empírica https://id.nlm.nih.gov/mesh/D004352 https://id.nlm.nih.gov/mesh/D014552 https://id.nlm.nih.gov/mesh/D017714 https://id.nlm.nih.gov/mesh/D000098411 https://id.nlm.nih.gov/mesh/D000073602 https://id.nlm.nih.gov/mesh/D000078182 ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades |
| title_short |
Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con infección sintomática de tracto urinario adquirida en la comunidad : revisión sistemática de la literatura |
| title_full |
Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con infección sintomática de tracto urinario adquirida en la comunidad : revisión sistemática de la literatura |
| title_fullStr |
Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con infección sintomática de tracto urinario adquirida en la comunidad : revisión sistemática de la literatura |
| title_full_unstemmed |
Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con infección sintomática de tracto urinario adquirida en la comunidad : revisión sistemática de la literatura |
| title_sort |
Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con infección sintomática de tracto urinario adquirida en la comunidad : revisión sistemática de la literatura |
| dc.creator.fl_str_mv |
Morales Chaverra, Juan Pablo |
| dc.contributor.advisor.none.fl_str_mv |
Cienfuegos Gallet, Astrid Vanessa Aguirre Acevedo, Daniel Camilo Restrepo Castro, Carlos Andrés |
| dc.contributor.author.none.fl_str_mv |
Morales Chaverra, Juan Pablo |
| dc.contributor.researchgroup.none.fl_str_mv |
Grupo de Investigación en Microbiología Básica y Aplicada-Microba |
| dc.contributor.jury.none.fl_str_mv |
Roncancio Villamil, Gustavo Eduardo Maya Restrepo, María Angélica |
| dc.subject.decs.none.fl_str_mv |
Farmacorresistencia microbiana Drug resistance, microbial Infecciones urinarias Urinary tract infections Infecciones comunitarias adquiridas Community-acquired infections Métodos de predicción automáticos Prediction methods, machine Programas de optimización del uso de los antimicrobianos Antimicrobial stewardship Revisión sistemática Systematic review |
| topic |
Farmacorresistencia microbiana Drug resistance, microbial Infecciones urinarias Urinary tract infections Infecciones comunitarias adquiridas Community-acquired infections Métodos de predicción automáticos Prediction methods, machine Programas de optimización del uso de los antimicrobianos Antimicrobial stewardship Revisión sistemática Systematic review Terapia antibiótica empírica https://id.nlm.nih.gov/mesh/D004352 https://id.nlm.nih.gov/mesh/D014552 https://id.nlm.nih.gov/mesh/D017714 https://id.nlm.nih.gov/mesh/D000098411 https://id.nlm.nih.gov/mesh/D000073602 https://id.nlm.nih.gov/mesh/D000078182 ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades |
| dc.subject.proposal.spa.fl_str_mv |
Terapia antibiótica empírica |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D004352 https://id.nlm.nih.gov/mesh/D014552 https://id.nlm.nih.gov/mesh/D017714 https://id.nlm.nih.gov/mesh/D000098411 https://id.nlm.nih.gov/mesh/D000073602 https://id.nlm.nih.gov/mesh/D000078182 |
| dc.subject.ods.none.fl_str_mv |
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades |
| description |
Introducción: El uso excesivo de antibióticos de amplio espectro es una causa clave de resistencia antimicrobiana (RAM), asociada a alta morbilidad, mortalidad y costos sanitarios. Los modelos de predicción de RAM, basados en características clínicas del paciente, pueden guiar la terapia empírica y reducir el uso inapropiado de antibióticos. Esta revisión sistemática evaluó modelos de predicción de RAM en pacientes con Infección del Tracto Urinario Sintomática Adquirida en la Comunidad (ISTU-C), analizando calidad del reporte, validez metodológica, predictores, modelos desarrollados y desempeño. Metodología: Se realizó una revisión sistemática siguiendo los lineamientos de PRISMA, CHARMS y TRIPOD-SRMA. Se incluyeron estudios de desarrollo y/o validación de modelos de predicción de RAM en ISTU-C. Se consultaron ocho bases de datos electrónicas (PubMed, ScienceDirect, Embase, Cochrane, entre otras), literatura gris y referencias de estudios. Dos investigadores realizaron selección, extracción y evaluación de calidad mediante TRIPOD y PROBAST. Resultados: De 1089 artículos, se incluyeron 23 estudios. Los desenlaces más comunes fueron BLEE (17.39%), microorganismos multidrogoresistentes (21.74%) y resistencia a betalactámicos, quinolonas, nitrofuranos e inhibidores de folato (47.82%). Los predictores más frecuentes fueron características demográficas (100%), exposición antibiótica (91.30%), comorbilidades (82.60%) y hospitalización previa (72.26%). El 65.22% usó estadística tradicional y 34.78% inteligencia artificial. El 56.52% no reportó manejo de datos faltantes. A pesar de que algunos alcanzaron un desempeño prometedor (AUC-ROC > 0.80), la mayoría se limitaron a validaciones internas. Solo nueve estudios realizaron validación externa. Conclusiones: Aunque prometedores, los modelos enfrentan limitaciones metodológicas. Mejorar la calidad del reporte, estandarizar definiciones de desenlaces y predictores, y validar externamente en poblaciones diversas es clave para su implementación clínica efectiva. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-05-27T13:32:58Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| status_str |
draft |
| dc.identifier.citation.none.fl_str_mv |
Morales Chaverra, JP. Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con Infección Sintomática de Tracto Urinario Adquirida en la Comunidad: Revisión sistemática de la literatura [Tesis de maestría]. Medellín, Colombia. Universidad de Antioquia; 2025. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/46125 |
| identifier_str_mv |
Morales Chaverra, JP. Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con Infección Sintomática de Tracto Urinario Adquirida en la Comunidad: Revisión sistemática de la literatura [Tesis de maestría]. Medellín, Colombia. Universidad de Antioquia; 2025. |
| url |
https://hdl.handle.net/10495/46125 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Morrison L, Zembower TR. Antimicrobial Resistance. Gastrointest Endosc Clin N Am [Internet]. 2020 Oct [cited 2022 Oct 30];30(4):619–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1052515720300659 McEwen SA, Collignon PJ. Antimicrobial Resistance: a One Health Perspective. Aarestrup FM, Schwarz S, Shen J, Cavaco L, editors. Microbiol Spectr [Internet]. 2018 Apr 6 [cited 2023 Mar 8];6(2):6.2.10. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.ARBA-0009-2017 Walsh TR, Gales AC, Laxminarayan R, Dodd PC. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLOS Med [Internet]. 2023 Jul 3 [cited 2024 Oct 20];20(7):e1004264. Available from: https://dx.plos.org/10.1371/journal.pmed.1004264 World Health Organization (WHO). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. 1st ed. Geneva: World Health Organization; 2022. 1 p. Raman G, Avendano E, Berger S, Menon V. Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections: Systematic review and meta-analysis. BMC Infect Dis [Internet]. 2015 Sep [cited 2022 Oct 30];15(1):1–11. Available from: https://pubmed.ncbi.nlm.nih.gov/26423743/ Kuti EL, Patel AA, Coleman CI. Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood stream infection: A meta-analysis. J Crit Care [Internet]. 2008 Mar [cited 2022 Oct 30];23(1):91–100. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0883944107001487 Shorr A, Micek S, Welch EC, Doherty JA, Reichley RM, Kollef MH. Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Crit Care Med [Internet]. 2011 Jan [cited 2022 Oct 30];(1):46–51. Available from: https://pubmed.ncbi.nlm.nih.gov/20890186/ Poudel AN, Zhu S, Cooper N, Little P, Tarrant C, Hickman M, et al. The economic burden of antibiotic resistance: A systematic review and meta-analysis. Karunasagar I, editor. PLOS ONE [Internet]. 2023 May 8 [cited 2024 Oct 20];18(5):e0285170. Available from: https://dx.plos.org/10.1371/journal.pone.0285170 Naylor NR, Atun R, Zhu N, Kulasabanathan K, Silva S, Chatterjee A, et al. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob Resist Infect Control [Internet]. 2018 Apr 25 [cited 2024 Oct 20];7(1):58. Available from: https://aricjournal.biomedcentral.com/articles/10.1186/s13756-018-0336-y Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis [Internet]. 2018 Mar [cited 2023 Jul 30];18(3):318–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1473309917307533 Ventola CL. The Antibiotic Resistance Crisis. PT [Internet]. 2015 Apr;40(4):277–83. Available from: https://pubmed.ncbi.nlm.nih.gov/25859123/ Didelot X, Pouwels KB. Machine-learning-assisted selection of antibiotic prescription. Nat Med [Internet]. 2019;25(7):1033–4. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L628434295&from=export Chin TL, McNulty C, Beck C, MacGowan A. Antimicrobial resistance surveillance in urinary tract infections in primary care: Table 1. J Antimicrob Chemother [Internet]. 2016 Oct [cited 2022 Oct 30];71(10):2723–8. Available from: https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkw223 Wang R, LaSala C. Role of antibiotic resistance in urinary tract infection management: a cost-effectiveness analysis. Am J Obstet Gynecol [Internet]. 2021 Nov [cited 2022 Oct 30];225(5):550.e1-550.e10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002937821008826 Davenport M, Mach KE, Shortliffe LMD, Banaei N, Wang TH, Liao JC. New and developing diagnostic technologies for urinary tract infections. Nat Rev Urol [Internet]. 2017 May [cited 2022 Oct 30];14(5):296–310. Available from: http://www.nature.com/articles/nrurol.2017.20 Yang X, Chen H, Zheng Y, Qu S, Wang H, Yi F. Disease burden and long-term trends of urinary tract infections: A worldwide report. Front Public Health [Internet]. 2022 Jul 27 [cited 2023 May 6];10:888205. Available from: https://www.frontiersin.org/articles/10.3389/fpubh.2022.888205/full Silago V, Moremi N, Mtebe M, Komba E, Masoud S, Mgaya FX, et al. Multidrug-Resistant Uropathogens Causing Community Acquired Urinary Tract Infections among Patients Attending Health Facilities in Mwanza and Dar es Salaam, Tanzania. Antibiotics [Internet]. 2022 Nov 29 [cited 2023 Aug 6];11(12):1718. Available from: https://pubmed.ncbi.nlm.nih.gov/36551375/ Maione A, Galdiero E, Cirillo L, Gambino E, Gallo MA, Sasso FP, et al. Prevalence, Resistance Patterns and Biofilm Production Ability of Bacterial Uropathogens from Cases of Community-Acquired Urinary Tract Infections in South Italy. Pathogens [Internet]. 2023 Mar 29 [cited 2023 Aug 6];12(4):537. Available from: https://pubmed.ncbi.nlm.nih.gov/37111423/ Foxman B. Epidemiology of Urinary Tract Infections: Incidence, Morbidity, and Economic Costs. Am J Med [Internet]. 2002 Jul 8 [cited 2023 Jul 22];113 Suppl 1A:5S-13S. Available from: https://pubmed.ncbi.nlm.nih.gov/12113866/ Cardwell SM, Crandon JL, Nicolau DP, McClure MH, Nailor MD. Epidemiology and economics of adult patients hospitalized with urinary tract infections. Hosp Pract [Internet]. 2016 Jan [cited 2023 Jul 30];44(1):33–40. Available from: https://pubmed.ncbi.nlm.nih.gov/26673518/ Öztürk R, Murt A. Epidemiology of urological infections: a global burden. World J Urol [Internet]. 2020 Nov [cited 2023 Jul 30];38(11):2669–79. Available from: http://link.springer.com/10.1007/s00345-019-03071-4 Dunne MW, Puttagunta S, Aronin SI, Brossette S, Murray J, Gupta V. Impact of Empirical Antibiotic Therapy on Outcomes of Outpatient Urinary Tract Infection Due to Nonsusceptible Enterobacterales. Microbiol Spectr [Internet]. 2022 Feb [cited 2022 Oct 30];10(1). Available from: https://pubmed.ncbi.nlm.nih.gov/35138150/ Ranjan Dash N, Albataineh MT, Alhourani N, Khoudeir AM, Ghanim M, Wasim M, et al. Community-acquired urinary tract infections due to extended-spectrum β -lactamase-producing organisms in United Arab Emirates. Travel Med Infect Dis [Internet]. 2018 Mar [cited 2023 Aug 6];22:46–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1477893918300073 Klingeberg A, Noll I, Willrich N, Feig M, Emrich D, Zill E, et al. Antibiotic-Resistant E. coli in Uncomplicated Community-Acquired Urinary Tract Infection. Dtsch Ärztebl Int [Internet]. 2018 Jul 23 [cited 2023 Aug 6]; Available from: https://pubmed.ncbi.nlm.nih.gov/30135009/ Garcia-Bustos V, Escrig AIR, López CC, Estellés RA, Jerusalem K, Cabañero-Navalón MD, et al. Prospective cohort study on hospitalized patients with suspected urinary tract infection and risk factors for multidrug resistance. Sci Rep [Internet]. 2021 Jun 7 [cited 2022 Jul 22];11(1). Available from: https://pubmed.ncbi.nlm.nih.gov/34099754/ Strich JR, Heil EL, Masur H. Considerations for Empiric Antimicrobial Therapy in Sepsis and Septic Shock in an Era of Antimicrobial Resistance. J Infect Dis [Internet]. 2020 Jul 21 [cited 2022 Oct 30];222(Supplement_2):S119–31. Available from: https://pubmed.ncbi.nlm.nih.gov/32691833/ Lewin-Epstein O, Baruch S, Hadany L, Stein GY, Obolski U. Predicting Antibiotic Resistance in Hospitalized Patients by Applying Machine Learning to Electronic Medical Records. Clin Infect Dis [Internet]. 2021 Jun 1 [cited 2022 Oct 30];72(11):e848–55. Available from: https://academic.oup.com/cid/article/72/11/e848/5929660 Ahmed H, Farewell D, Francis NA, Paranjothy S, Butler CC. Choice of Empirical Antibiotic Therapy and Adverse Outcomes in Older Adults With Suspected Urinary Tract Infection: Cohort Study. Open Forum Infect Dis [Internet]. 2019 Mar 1 [cited 2022 Oct 30];6(3):ofz039. Available from: https://academic.oup.com/ofid/article/doi/10.1093/ofid/ofz039/5298200 Akinosoglou K, Koutsouri CP, deLastic AL, Kolosaka M, Davoulos C, Niarou V, et al. Patterns, price and predictors of successful empiric antibiotic therapy in a real-world setting. J Clin Pharm Ther [Internet]. 2021 Jun [cited 2022 Nov 3];46(3):846–52. Available from: https://pubmed-ncbi-nlm-nih-gov.udea.lookproxy.com/33554360/ Zhu H, Chen Y, Hang Y, Luo H, Fang X, Xiao Y, et al. Impact of inappropriate empirical antibiotic treatment on clinical outcomes of urinary tract infections caused by Escherichia coli: a retrospective cohort study. J Glob Antimicrob Resist [Internet]. 2021 Sep [cited 2023 Feb 19];26:148–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213716521001478 Yelin I, Snitser O, Novich G, Katz R, Tal O, Parizade M, et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat Med [Internet]. 2019 Jul [cited 2022 Oct 25];25(7):1143–52. Available from: https://www.nature.com/articles/s41591-019-0503-6 Rich SN, Jun I, Bian J, Boucher C, Cherabuddi K, Morris Jr JG, et al. Development of a Prediction Model for Antibiotic-Resistant Urinary Tract Infections Using Integrated Electronic Health Records from Multiple Clinics in North-Central Florida. Infect Dis Ther [Internet]. 2022 Oct [cited 2022 Nov 2];11(5):1869–82. Available from: https://pubmed.ncbi.nlm.nih.gov/35908268/ Delory T, Jeanmougin P, Lariven S, Aubert JP, Peiffer-Smadja N, Boëlle PY, et al. A computerized decision support system (CDSS) for antibiotic prescription in primary care-Antibioclic: implementation, adoption and sustainable use in the era of extended antimicrobial resistance. J Antimicrob Chemother [Internet]. 2020 Aug [cited 2022 Nov 2];75(8):2353–62. Available from: https://pubmed.ncbi.nlm.nih.gov/32357226/ Lodise TP, Bonine NG, Ye JM, Folse HJ, Gillard P. Development of a bedside tool to predict the probability of drug-resistant pathogens among an adult population with gram-negative infections. Open Forum Infect Dis [Internet]. 2019 Aug [cited 2022 Oct 30];5:S351–2. Available from: https://pubmed.ncbi.nlm.nih.gov/31412809/ Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating [Internet]. Cham: Springer International Publishing; 2019 [cited 2023 Jul 31]. (Statistics for Biology and Health). Available from: http://link.springer.com/10.1007/978-3-030-16399-0 Van Smeden M, Reitsma JB, Riley RD, Collins GS, Moons KG. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol [Internet]. 2021 Apr [cited 2023 Jul 30];132:142–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0895435621000135 Laka M, Milazzo A, Merlin T. Can evidence-based decision support tools transform antibiotic management? A systematic review and meta-analyses. J Antimicrob Chemother [Internet]. 2020 May 1 [cited 2023 May 6];75(5):1099–111. Available from: https://academic.oup.com/jac/article/75/5/1099/5710709 Kanjilal S, Oberst M, Boominathan S, Zhou H, Hooper DC, Sontag D. A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated urinary tract infection. Sci Transl Med [Internet]. 2020;12(568). Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2008495943&from=export Shah A, Justo JA, Bookstaver PB, Kohn J, Albrecht H, Al-Hasan MN. Application of fluoroquinolone resistance score in management of complicated urinary tract infections. Antimicrob Agents Chemother [Internet]. 2017 May [cited 2022 Oct 30];61(5). Available from: https://pubmed.ncbi.nlm.nih.gov/28193655/ Ben Ayed H, Koubaa M, Hammami F, Marrakchi C, Rekik K, Ben Jemaa T, et al. Performance of an Easy and Simple New Scoring Model in Predicting Multidrug-Resistant Enterobacteriaceae in Community-Acquired Urinary Tract Infections. Open Forum Infect Dis [Internet]. 2019;6(4). Available from: https://pubmed.ncbi.nlm.nih.gov/30949542/ Neugebauer M, Ebert M, Vogelmann R. A clinical decision support system improves antibiotic therapy for upper urinary tract infection in a randomized single-blinded study. BMC Health Serv Res [Internet]. 20200306th ed. 2020 Mar 6 [cited 2022 Aug 22];20(1):185. Available from: https://pubmed.ncbi.nlm.nih.gov/32143630/ Liu H, Qiu S, Chen M, Lyu J, Yu G, Xue L. A clinical prediction tool for extended-spectrum β-lactamase-producing Enterobacteriaceae urinary tract infection. BMC Infect Dis [Internet]. 20220113th ed. 2022 Jan 13 [cited 2023 Jul 31];22(1):50. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-022-07040-y Debray TPA, Damen JAAG, Snell KIE, Ensor J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ [Internet]. 2017 Jan 5 [cited 2023 May 1];i6460. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.i6460 Paterson DL. Impact of Antibiotic Resistance in Gram‐Negative Bacilli on Empirical and Definitive Antibiotic Therapy. Clin Infect Dis [Internet]. 2008 Sep 15 [cited 2023 Apr 8];47(S1):S14–20. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/590062 Zilberberg MD, Nathanson BH, Sulham K, Fan W, Shorr AF. Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis. BMC Infect Dis [Internet]. 2017;17(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018470884&doi=10.1186%2fs12879-017-2383 z&partnerID=40&md5=da7a9d70432a18d67ecf92d5a7cab3ae Bader MS, Loeb M, Brooks AA. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med [Internet]. 2017 Feb 17 [cited 2022 Oct 30];129(2):242–58. Available from: https://www.tandfonline.com/doi/full/10.1080/00325481.2017.1246055 Horcajada JP, Shaw E, Padilla B, Pintado V, Calbo E, Benito N, et al. Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: a prospective multicentre cohort study in the era of antimicrobial resistance. Clin Microbiol Infect [Internet]. 2013 Oct [cited 2023 Apr 9];19(10):962–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1198743X14629839 Organización Mundial de la Salud. Plan de acción mundial sobre la resistencia a los antimicrobianos [Internet]. Ginebra: Organización Mundial de la Salud; 2016 [cited 2022 Oct 30]. 30 p. Available from: https://apps.who.int/iris/handle/10665/255204 Müller L, Srinivasan A, Abeles SR, Rajagopal A, Torriani FJ, Aronoff-Spencer E. A Risk-Based Clinical Decision Support System for Patient-Specific Antimicrobial Therapy (iBiogram): Design and Retrospective Analysis. J Med Internet Res [Internet]. 2021 [cited 2023 Apr 3];23(12). Available from: https://pubmed.ncbi.nlm.nih.gov/34870601/ Hindler JF, Stelling J. Analysis and Presentation of Cumulative Antibiograms: A New Consensus Guideline from the Clinical and Laboratory Standards Institute. Clin Infect Dis [Internet]. 2007 Mar 15 [cited 2024 Nov 1];44(6):867–73. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/511864 Linhares I, Raposo T, Rodrigues A, Almeida A. Frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections: a ten-year surveillance study (2000–2009). BMC Infect Dis [Internet]. 2013 Dec [cited 2023 Apr 9];13(1):19. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-13-19 Hirsch EB, Zucchi PC, Chen A, Raux BR, Kirby JE, McCoy C, et al. Susceptibility of Multidrug-Resistant Gram-Negative Urine Isolates to Oral Antibiotics. Antimicrob Agents Chemother [Internet]. 2016 May [cited 2023 Apr 9];60(5):3138–40. Available from: https://journals.asm.org/doi/10.1128/AAC.02961-15 Ironmonger D, Edeghere O, Gossain S, Hawkey PM. Use of antimicrobial resistance information and prescribing guidance for management of urinary tract infections: survey of general practitioners in the West Midlands. BMC Infect Dis [Internet]. 2016 Dec [cited 2023 Apr 9];16(1):226. Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-016-1559-2 Bischoff S, Walter T, Gerigk M, Ebert M, Vogelmann R. Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect Dis [Internet]. 2018 Dec [cited 2023 Apr 9];18(1):56. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-018-2960-9 Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med [Internet]. 2019 Apr 4 [cited 2023 Apr 9];380(14):1347–58. Available from: https://pubmed.ncbi.nlm.nih.gov/30943338/ Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Georgiou P, Lescure FX, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect [Internet]. 2020 May [cited 2023 Apr 9];26(5):584–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1198743X1930494X Gomila A, Shaw E, Carratalà J, Leibovici L, Tebé C, Wiegand I, et al. Predictive factors for multidrug-resistant gram-negative bacteria among hospitalised patients with complicated urinary tract infections. Antimicrob Resist Infect Control [Internet]. 2018;7(1). Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L623869500&from=export Tan C, Chlebicki M. Urinary tract infections in adults. Singapore Med J [Internet]. 2016 Sep [cited 2023 Jul 9];57(09):485–90. Available from: http://www.smj.org.sg/article/urinary-tract-infections-adults Centers for Disease Control and Prevention (CDC). Urinary Tract Infection (Catheter-Associated Urinary Tract Infection [CAUTI] and Non-Catheter-Associated Urinary Tract Infection [UTI]) Events [Internet]. 2023 Jan. Available from: https://www.cdc.gov/nhsn/pdfs/pscmanual/7psccauticurrent.pdf Donelli G, editor. Advances in Microbiology, Infectious Diseases and Public Health: Volume 15 [Internet]. Cham: Springer International Publishing; 2021 [cited 2024 Oct 20]. (Advances in Experimental Medicine and Biology; vol. 1323). Available from: https://link.springer.com/10.1007/978-3-030-71202-0 Siegman‐Igra Y, Fourer B, Orni‐Wasserlauf R, Golan Y, Noy A, Schwartz D, et al. Reappraisal of Community‐Acquired Bacteremia: A Proposal of a New Classification for the Spectrum of Acquisition of Bacteremia. Clin Infect Dis [Internet]. 2002 Jun [cited 2024 Oct 20];34(11):1431–9. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/339809 Kabugo D, Kizito S, Ashok DD, Kiwanuka AG, Nabimba R, Namunana S, et al. Factors associated with community-acquired urinary tract infections among adults attending assessment centre, Mulago Hospital Uganda. Afr Health Sci [Internet]. 2017 Mar 7 [cited 2024 Oct 20];16(4):1131. Available from: https://www.ajol.info/index.php/ahs/article/view/152550 Boev C, Kiss E. Hospital-Acquired Infections: Current Trends and Prevention. Crit Care Nurs Clin North Am [Internet]. 2017 Mar [cited 2024 Oct 20];29(1):51–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S089958851630079X Ternes B, Wagenlehner FME. Leitliniengerechte Therapie von Harnwegsinfektionen. Urol [Internet]. 2020 May [cited 2023 Aug 19];59(5):550–8. Available from: http://link.springer.com/10.1007/s00120-020-01174-0 Kang CI, Kim J, Park DW, Kim BN, Ha US, Lee SJ, et al. Clinical Practice Guidelines for the Antibiotic Treatment of Community-Acquired Urinary Tract Infections. Infect Chemother [Internet]. 2018 [cited 2023 Feb 25];50(1):67. Available from: https://icjournal.org/DOIx.php?id=10.3947/ic.2018.50.1.67 Meiland R. Association Between Escherichia coli Bacteriuria and Renal Function in Women: Long-term Follow-up. Arch Intern Med [Internet]. 2007 Feb 12 [cited 2023 Aug 19];167(3):253. Available from: http://archinte.jamanetwork.com/article.aspx?doi=10.1001/archinte.167.3.253 Bazira PJ. Anatomy of the lower urinary tract. Surg Oxf [Internet]. 2022 Aug [cited 2022 Aug 12];40(8):489–500. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0263931922001028 Hickling DR, Sun TT, Wu XR. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection. Mulvey MA, Stapleton AE, Klumpp DJ, editors. Microbiol Spectr [Internet]. 2015 Jul 2 [cited 2022 Aug 12];3(4):3.4.21. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.UTI-0016-2012 Andreu A. Patogenia de las infecciones del tracto urinario. Enfermedades Infecc Microbiol Clínica [Internet]. 2005 Dec [cited 2023 Aug 19];23:15–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0213005X05752101 Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol-Ren Physiol [Internet]. 2009 Dec [cited 2023 Aug 13];297(6):F1477–501. Available from: https://www.physiology.org/doi/10.1152/ajprenal.00327.2009 McLellan LK, Hunstad DA. Urinary Tract Infection: Pathogenesis and Outlook. Trends Mol Med [Internet]. 2016 Nov [cited 2023 Jul 10];22(11):946–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1471491416301186 Gupta K, Trautner BW. Urinary Tract Infections, Pyelonephritis, and Prostatitis. In: Loscalzo J, Fauci A, Kasper D, Hauser S, Longo D, Jameson JL, editors. Harrison’s Principles of Internal Medicine, 21e [Internet]. New York, NY: McGraw-Hill Education; 2022 [cited 2023 Jul 11]. Available from: accessmedicine.mhmedical.com/content.aspx?aid=1201012844 Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol [Internet]. 2015 May [cited 2022 Oct 30];13(5):269–84. Available from: http://www.nature.com/articles/nrmicro3432 Kline KA, Dodson KW, Caparon MG, Hultgren SJ. A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol [Internet]. 2010 May [cited 2023 Aug 13];18(5):224–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966842X10000405 Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA. Chaperone-Usher Fimbriae of Escherichia coli. Wandersman C, editor. PLoS ONE [Internet]. 2013 Jan 30 [cited 2023 Aug 13];8(1):e52835. Available from: https://dx.plos.org/10.1371/journal.pone.0052835 Waksman G, Hultgren SJ. Structural biology of the chaperone–usher pathway of pilus biogenesis. Nat Rev Microbiol [Internet]. 2009 Nov [cited 2023 Aug 13];7(11):765–74. Available from: https://www.nature.com/articles/nrmicro2220 Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A. The chaperone/usher pathways of Pseudomonas aeruginosa : Identification of fimbrial gene clusters ( cup ) and their involvement in biofilm formation. Proc Natl Acad Sci [Internet]. 2001 Jun 5 [cited 2023 Aug 13];98(12):6911–6. Available from: https://pnas.org/doi/full/10.1073/pnas.111551898 Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME. Complicated Catheter-Associated Urinary Tract Infections Due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev [Internet]. 2008 Jan [cited 2023 Aug 13];21(1):26–59. Available from: https://journals.asm.org/doi/10.1128/CMR.00019-07 Chorell E, Pinkner JS, Bengtsson C, Banchelin TSL, Edvinsson S, Linusson A, et al. Mapping pilicide anti-virulence effect in Escherichia coli, a comprehensive structure–activity study. Bioorg Med Chem [Internet]. 2012 May [cited 2023 Aug 13];20(9):3128–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968089612000788 Kostakioti M, Hadjifrangiskou M, Cusumano CK, Hannan TJ, Janetka JW, Hultgren SJ. Distinguishing the Contribution of Type 1 Pili from That of Other QseB-Misregulated Factors when QseC Is Absent during Urinary Tract Infection. Bliska JB, editor. Infect Immun [Internet]. 2012 Aug [cited 2023 Jul 10];80(8):2826–34. Available from: https://journals.asm.org/doi/10.1128/IAI.00283-12 Kaur R, Kaur R. Symptoms, risk factors, diagnosis and treatment of urinary tract infections. Postgrad Med J [Internet]. 2021 Dec 1 [cited 2023 Aug 21];97(1154):803–12. Available from: https://academic.oup.com/pmj/article/97/1154/803/6967180 Foxman B. Urinary Tract Infection Syndromes. Infect Dis Clin North Am [Internet]. 2014 Mar [cited 2022 Nov 1];28(1):1–13. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891552013000743 Geerlings SE. Clinical Presentations and Epidemiology of Urinary Tract Infections. Mulvey MA, Stapleton AE, Klumpp DJ, editors. Microbiol Spectr [Internet]. 2016 Oct 14 [cited 2023 Aug 21];4(5):4.5.03. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.UTI-0002-2012 Wagenlehner FME, Pilatz A, Weidner W. Urosepsis—from the view of the urologist. Int J Antimicrob Agents [Internet]. 2011 Dec [cited 2023 Aug 21];38:51–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857911003669 Daniel M, Szymanik-Grzelak H, Sierdziński J, Podsiadły E, Kowalewska-Młot M, Pańczyk-Tomaszewska M. Epidemiology and Risk Factors of UTIs in Children—A Single-Center Observation. J Pers Med [Internet]. 2023 Jan 10 [cited 2023 Aug 21];13(1):138. Available from: https://www.mdpi.com/2075-4426/13/1/138 Tenney J, Hudson N, Alnifaidy H, Li JTC, Fung KH. Risk factors for aquiring multidrug-resistant organisms in urinary tract infections: A systematic literature review. Saudi Pharm J [Internet]. 2018 Jul [cited 2022 Oct 3];26(5):678–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1319016418300471 Lee DS, Lee SJ, Choe HS. Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. BioMed Res Int [Internet]. 2018 Sep 26 [cited 2023 Aug 21];2018:1–14. Available from: https://www.hindawi.com/journals/bmri/2018/7656752/ Mahony M, McMullan B, Brown J, Kennedy SE. Multidrug-resistant organisms in urinary tract infections in children. Pediatr Nephrol [Internet]. 2020 Sep [cited 2023 Sep 5];35(9):1563–73. Available from: http://link.springer.com/10.1007/s00467-019-04316-5 Waller TA, Pantin SAL, Yenior AL, Pujalte GGA. Urinary Tract Infection Antibiotic Resistance in the United States. Prim Care Clin Off Pract [Internet]. 2018 Sep [cited 2022 Oct 30];45(3):455–66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0095454318300423 Tandogdu Z, Wagenlehner FME. Global epidemiology of urinary tract infections. Curr Opin Infect Dis [Internet]. 2016 Feb [cited 2023 Aug 19];29(1):73–9. Available from: https://pubmed.ncbi.nlm.nih.gov/26694621/ Nicolle LE. Urinary Tract Infection. Crit Care Clin [Internet]. 2013 Jul [cited 2023 Aug 19];29(3):699–715. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0749070413000377 Laupland KB, Ross T, Pitout JDD, Church DL, Gregson DB. Community-onset Urinary Tract Infections: A Population-based Assessment. Infection [Internet]. 2007 Jun [cited 2023 Aug 21];35(3):150–3. Available from: http://link.springer.com/10.1007/s15010-007-6180-2 Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol Immunol [Internet]. 2019 Apr [cited 2023 Aug 21];108:56–67. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0161589018306357 Kahlmeter G, Poulsen HO. Antimicrobial susceptibility of Escherichia coli from community-acquired urinary tract infections in Europe: the ECO·SENS study revisited. Int J Antimicrob Agents [Internet]. 2012 Jan [cited 2023 Aug 21];39(1):45–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857911003761 Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, Van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR- P. aeruginosa ). Clin Infect Dis [Internet]. 2022 Aug 25 [cited 2024 Jan 30];75(2):187–212. Available from: https://academic.oup.com/cid/article/75/2/187/6570801 Chen YH, Ko WC, Hsueh PR. Emerging resistance problems and future perspectives in pharmacotherapy for complicated urinary tract infections. Expert Opin Pharmacother [Internet]. 2013 Apr [cited 2023 Aug 21];14(5):587–96. Available from: http://www.tandfonline.com/doi/full/10.1517/14656566.2013.778827 Paterson DL. Resistance in Gram-Negative Bacteria: Enterobacteriaceae. Am J Med [Internet]. 2006 Jun [cited 2023 Aug 21];119(6):S20–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002934306003445 Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β -lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrob Resist [Internet]. 2021 Jul 12 [cited 2024 Jan 30];3(3):dlab092. Available from: https://academic.oup.com/jacamr/article/doi/10.1093/jacamr/dlab092/6322891 Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, Van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase–Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii , and Stenotrophomonas maltophilia Infections. Clin Infect Dis [Internet]. 2022 Jul 6 [cited 2024 Feb 4];74(12):2089–114. Available from: https://academic.oup.com/cid/article/74/12/2089/6453394 Meini S, Tascini C, Cei M, Sozio E, Rossolini GM. AmpC β-lactamase-producing Enterobacterales: what a clinician should know. Infection [Internet]. 2019 Jun 1;47(3):363–75. Available from: https://doi.org/10.1007/s15010-019-01291-9 Garau J. Other antimicrobials of interest in the era of extended-spectrum β-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin Microbiol Infect [Internet]. 2008 Jan [cited 2023 Aug 21];14:198–202. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1198743X1460495X Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther [Internet]. 2013 Mar [cited 2023 Aug 21];11(3):297–308. Available from: http://www.tandfonline.com/doi/full/10.1586/eri.13.12 Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis. 2021;40(10):2053–68. Queenan Anne Marie, Bush Karen. Carbapenemases: the Versatile β-Lactamases. Clin Microbiol Rev [Internet]. 2007 Jul 1 [cited 2024 Feb 5];20(3):440–58. Available from: https://doi.org/10.1128/cmr.00001-07 Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci [Internet]. 2018 Feb 23 [cited 2024 Feb 5];5:16. Available from: http://journal.frontiersin.org/article/10.3389/fmolb.2018.00016/full Rada AM, De La Cadena E, Agudelo C, Capataz C, Orozco N, Pallares C, et al. Dynamics of bla KPC-2 Dissemination from Non-CG258 Klebsiella pneumoniae to Other Enterobacterales via IncN Plasmids in an Area of High Endemicity. Antimicrob Agents Chemother [Internet]. 2020 Nov 17 [cited 2024 Feb 5];64(12):e01743-20. Available from: https://journals.asm.org/doi/10.1128/AAC.01743-20 Hobson CA, Pierrat G, Tenaillon O, Bonacorsi S, Bercot B, Jaouen E, et al. Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrob Agents Chemother [Internet]. 2022 Sep 20 [cited 2024 Feb 5];66(9):e00447-22. Available from: https://journals.asm.org/doi/10.1128/aac.00447-22 Denakpo E, Naas T, Iorga BI. An updated patent review of metallo-β-lactamase inhibitors (2020–2023). Expert Opin Ther Pat [Internet]. 2023 Aug 3 [cited 2024 Feb 5];33(7–8):523–38. Available from: https://www.tandfonline.com/doi/full/10.1080/13543776.2023.2262763 Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM Metallo--Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev. 2019;32(2). Boyd Sara E., Holmes Alison, Peck Richard, Livermore David M., Hope William. OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother [Internet]. 2022 Jul 20 [cited 2024 Feb 5];66(8):e00216-22. Available from: https://doi.org/10.1128/aac.00216-22 Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin Microbiol Rev [Internet]. 2019 Dec 18 [cited 2024 Feb 5];33(1):e00102-19. Available from: https://journals.asm.org/doi/10.1128/CMR.00102-19 Zheng D, Bergen PJ, Landersdorfer CB, Hirsch EB. Differences in Fosfomycin Resistance Mechanisms between Pseudomonas aeruginosa and Enterobacterales. Antimicrob Agents Chemother [Internet]. 2022 Feb 15 [cited 2024 Feb 5];66(2):e01446-21. Available from: https://journals.asm.org/doi/10.1128/AAC.01446-21 Newman J, Floyd R, Fothergill J. Invasion and diversity in Pseudomonas aeruginosa urinary tract infections. J Med Microbiol [Internet]. 2022 Mar 9 [cited 2024 Feb 5];71(3). Available from: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.001458 Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev [Internet]. 2019 Sep 18 [cited 2024 Feb 5];32(4):e00031-19. Available from: https://journals.asm.org/doi/10.1128/CMR.00031-19 Botelho J, Grosso F, Peixe L. Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a blaGES-6 carbapenemase. J Antimicrob Chemother [Internet]. 2018 Jan 1 [cited 2024 Feb 5];73(1):77–83. Available from: http://academic.oup.com/jac/article/73/1/77/4339348 Kocsis B, Toth A, Gulyas D, Ligeti B, Katona K, Rokusz L, et al. Acquired qnrVC1 and bla NDM-1 resistance markers in an international high-risk Pseudomonas aeruginosa ST773 clone. J Med Microbiol [Internet]. 2019 Mar 1 [cited 2024 Feb 6];68(3):336–8. Available from: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.000927 Martínez-Martínez L, Calvo J. El problema creciente de la resistencia antibiótica en bacilos gramnegativos: situación actual. Enfermedades Infecc Microbiol Clínica [Internet]. 2010 Sep [cited 2024 Feb 6];28:25–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0213005X10700276 Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of Enterococci. Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI, editors. Microbiol Spectr [Internet]. 2019 Jul 19 [cited 2024 Feb 6];7(4):7.4.9. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.GPP3-0053-2018 García-Solache M, Rice LB. The Enterococcus: a Model of Adaptability to Its Environment. Clin Microbiol Rev [Internet]. 2019 Mar 20 [cited 2024 Feb 6];32(2):e00058-18. Available from: https://journals.asm.org/doi/10.1128/CMR.00058-18 Gagetti P, Bonofiglio L, García Gabarrot G, Kaufman S, Mollerach M, Vigliarolo L, et al. Resistance to β-lactams in enterococci. Rev Argent Microbiol [Internet]. 2019 Apr 1;51(2):179–83. Available from: https://www.sciencedirect.com/science/article/pii/S032575411830083X Assouma FF, Sina H, Dossou AD, Socohou A, Hounsou MC, Avogbe PH, et al. Antibiotic Resistance Profiling of Pathogenic Staphylococcus Species from Urinary Tract Infection Patients in Benin. Hassan S, editor. BioMed Res Int [Internet]. 2023 May 15 [cited 2024 Feb 6];2023:1–9. Available from: https://www.hindawi.com/journals/bmri/2023/6364128/ Saenkham-Huntsinger P, Hyre AN, Hanson BS, Donati GL, Adams LG, Ryan C, et al. Copper Resistance Promotes Fitness of Methicillin-Resistant Staphylococcus aureus during Urinary Tract Infection. Justice S, editor. mBio [Internet]. 2021 Oct 26 [cited 2024 Feb 6];12(5):e02038-21. Available from: https://journals.asm.org/doi/10.1128/mBio.02038-21 Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI, editors. Microbiol Spectr [Internet]. 2019 Apr 12 [cited 2024 Feb 6];7(2):7.2.18. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.GPP3-0057-2018 Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. 2020 Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev [Internet]. 2018 Oct [cited 2024 Feb 8];31(4):e00020-18. Available from: https://journals.asm.org/doi/10.1128/CMR.00020-18 Akoachere JFTK, Yvonne S, Akum NH, Seraphine EN. Etiologic profile and antimicrobial susceptibility of community-acquired urinary tract infection in two Cameroonian towns. BMC Res Notes [Internet]. 2012;5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860590429&doi=10.1186%2f1756-0500-5-219&partnerID=40&md5=37e95f2cfa4eb1b69104444926c77d19 Chu CM, Lowder JL. Diagnosis and treatment of urinary tract infections across age groups. Am J Obstet Gynecol [Internet]. 2018 Jul [cited 2023 Aug 23];219(1):40–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002937817328053 Gupta K, Bhadelia N. Management of Urinary Tract Infections From Multidrug-Resistant Organisms. Infect Dis Clin North Am [Internet]. 2014 Mar [cited 2023 Aug 21];28(1):49–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891552013000809 Auer S, Wojna A, Hell M. Oral Treatment Options for Ambulatory Patients with Urinary Tract Infections Caused by Extended-Spectrum-β-Lactamase-Producing Escherichia coli. Antimicrob Agents Chemother [Internet]. 2010 Sep [cited 2023 Aug 23];54(9):4006–8. Available from: https://journals.asm.org/doi/10.1128/AAC.01760-09 Allison MG, Heil EL, Hayes BD. Appropriate Antibiotic Therapy. Emerg Med Clin North Am [Internet]. 2017 Feb [cited 2023 Sep 22];35(1):25–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0733862716300645 Hebert C, Gao Y, Rahman P, Dewart C, Lustberg M, Pancholi P, et al. Prediction of antibiotic susceptibility for urinary tract infection in a hospital setting. Antimicrob Agents Chemother. 2020;64(7):e02236-19. Weinstein EJ, Han JH, Lautenbach E, Nachamkin I, Garrigan C, Bilker WB, et al. A Clinical Prediction Tool for Extended-Spectrum Cephalosporin Resistance in Community-Onset Enterobacterales Urinary Tract Infection. Open Forum Infect Dis [Internet]. 2019 Apr 1 [cited 2023 Sep 17];6(4). Available from: https://academic.oup.com/ofid/article/doi/10.1093/ofid/ofz164/5426452 Niño SF, Maldonado N, Biojo J, Ospina RM, Velásquez P, Aguirre H, et al. [Development and validation of a diagnostic model of antimicrobial resistance by extended-spectrum beta-lactamases in community-acquired urinary tract infections. How to adjust the prediction in variable outcome prevalences? The usefulness of contracting predictors with LASSO regression]. Rev Chil Infectol. 2020 Dec;37(6):683–9. Tandan M, Timilsina M, Cormican M, Vellinga A. Role of patient descriptors in predicting antimicrobial resistance in urinary tract infections using a decision tree approach: A retrospective cohort study. Int J Med Inf [Internet]. 2019 Jul 1 [cited 2022 Aug 20];127:127–33. Available from: https://www.sciencedirect.com/science/article/pii/S1386505618302351 Steyerberg EW, Moons KGM, Van Der Windt DA, Hayden JA, Perel P, Schroter S, et al. Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. PLoS Med [Internet]. 2013 Feb 5 [cited 2023 Sep 10];10(2):e1001381. Available from: https://dx.plos.org/10.1371/journal.pmed.1001381 Tang R, Luo R, Tang S, Song H, Chen X. Machine learning in predicting antimicrobial resistance: a systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2022 Nov [cited 2024 Oct 7];60(5–6):106684. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857922002114 Tharmakulasingam M, Wang W, Kerby M, Ragione RL, Fernando A. TransAMR: An Interpretable Transformer Model for Accurate Prediction of Antimicrobial Resistance Using Antibiotic Administration Data. IEEE Access [Internet]. 2023 [cited 2024 Jun 16];11:75337–50. Available from: https://ieeexplore.ieee.org/document/10185002/ Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Ann Intern Med [Internet]. 2015 Jan 6 [cited 2023 Sep 10];162(1):W1–73. Available from: https://www.acpjournals.org/doi/10.7326/M14-0698 Collins GS, Reitsma JB, Altman DG, Moons K. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med [Internet]. 2015 [cited 2023 Apr 30];13(1):1. Available from: http://www.biomedcentral.com/1741-7015/13/1 Bonnett LJ, Snell KIE, Collins GS, Riley RD. Guide to presenting clinical prediction models for use in clinical settings. BMJ [Internet]. 2019 Apr 17 [cited 2023 Sep 22];l737. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.l737 Andaur Navarro CL, Damen JAA, Van Smeden M, Takada T, Nijman SWJ, Dhiman P, et al. Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models. J Clin Epidemiol [Internet]. 2023 Feb [cited 2023 Sep 22];154:8–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0895435622003006 Zhang Z, Beck MW, Winkler DA, Huang B, Sibanda W, Goyal H. Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Ann Transl Med [Internet]. 2018 Jun [cited 2023 Sep 22];6(11):216–216. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035992/ Song Y yan, Lu Y. Decision tree methods: applications for classification and prediction. 25 [Internet]. 2015 Apr;27(2):130–5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/ Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ [Internet]. 2021 Mar 29 [cited 2023 Mar 11];n71. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.n71 Snell KIE, Levis B, Damen JAA, Dhiman P, Debray TPA, Hooft L, et al. Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: checklist for systematic reviews and meta-analyses (TRIPOD-SRMA). BMJ [Internet]. 2023 May 3 [cited 2024 Dec 16];e073538. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj-2022-073538 Moons KGM, de Groot JAH, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist. PLoS Med [Internet]. 2014 Oct 14 [cited 2023 Feb 25];11(10):e1001744. Available from: https://dx.plos.org/10.1371/journal.pmed.1001744 Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med [Internet]. 2019 Jan 1 [cited 2023 Feb 28];170(1):51. Available from: http://annals.org/article.aspx?doi=10.7326/M18-1376 Faine BA, Mohr N, Vakkalanka P, Gao AS, Liang SY. Validation of a Clinical Decision Rule to Identify Risk Factors Associated With Multidrug-Resistant Urinary Pathogens in the Emergency Department. Ann Pharmacother [Internet]. 2019;53(1):56–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052562081&doi=10.1177%2f1060028018792680&partnerID=40&md5=77d3f48ebcd6f87229d13eec02872ac7 Cooley LF, Cohen JE, Chen L, Schaeffer AJ. Algorithms to Enhance Empiric Antimicrobial Choice for Outpatients With Afebrile Complicated Cystitis Reflects Importance of Status of the Urinary Tract and Patient Place of Residence. Urology [Internet]. 2020 Nov [cited 2024 Aug 13];145:127–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0090429520310347 García-Tello A, Gimbernat H, Redondo C, Meilán E, Arana DM, Cacho J, et al. Prediction of infection caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: development of a clinical decision-making nomogram. Scand J Urol [Internet]. 2018 Jan 2 [cited 2024 Jun 16];52(1):70–5. Available from: https://www.tandfonline.com/doi/full/10.1080/21681805.2017.1373698 Lee HG, Seo Y, Kim JH, Han SB, Im JH, Jung CY, et al. Machine learning model for predicting ciprofloxacin resistance and presence of ESBL in patients with UTI in the ED. Sci Rep [Internet]. 2023 Feb 25 [cited 2023 May 13];13(1):3282. Available from: https://www.nature.com/articles/s41598-023-30290-y Cohen JE, Chen L, Schaeffer AJ. Algorithms Using Previous Resistance, Prior Antimicrobial Prescriptions, and Patient Place of Residence Enhance Empirical Therapy for Women With Uncomplicated Urinary Tract Infections. Urology [Internet]. 2020 Mar [cited 2024 Aug 15];137:72–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0090429519310118 Yang J, Eyre DW, Clifton DA. Interpretable Machine Learning-based Decision Support for Prediction of Antibiotic Resistance for Complicated Urinary Tract Infections. medRxiv [Internet]. 2023;((Yang J., jenny.yang@eng.ox.ac.uk; Clifton D.A.) Institute of Biomedical Engineering, Dept. Engineering Science, University of Oxford, United Kingdom). Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2022548019&from=export Tumbarello M, Raffaelli F, Peghin M, Losito AR, Chirico L, Giuliano G, et al. Characterisation and risk factor profiling of Pseudomonas aeruginosa urinary tract infections: pinpointing those likely to be caused by multidrug-resistant strains. Int J Antimicrob Agents. 2020;55(4):105900. Ruiz-Ramos J, Monje-López ÁE, Medina-Catalan D, Herrera-Mateo S, Hernández-Ontiveros H, Puig-Campany M, et al. PREDICTION OF MULTIDRUG-RESISTANT BACTERIA IN URINARY TRACT INFECTIONS IN THE EMERGENCY DEPARTMENT. J Emerg Med [Internet]. 2023 Apr 18; Available from: https://www.sciencedirect.com/science/article/pii/S0736467923002317 Lodise TP, Chen LH, Wei R, Im TM, Contreras R, Bruxvoort KJ, et al. Clinical Risk Scores to Predict Nonsusceptibility to Trimethoprim-Sulfamethoxazole, Fluoroquinolone, Nitrofurantoin, and Third-Generation Cephalosporin Among Adult Outpatient Episodes of Complicated Urinary Tract Infection. Open Forum Infect Dis [Internet]. 2023 Aug 1 [cited 2024 Aug 13];10(8):ofad319. Available from: https://academic.oup.com/ofid/article/doi/10.1093/ofid/ofad319/7198038 Li NY, Poh GQ, Teng GCW, Chen HH, Chan DSG, Chan SP, et al. A prediction tool for the presence of ceftriaxone-resistant uropathogens upon hospital admission. Antibiotics [Internet]. 2020;9(6):1–9. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2004549065&from=export İlhanlı N, Park SY, Kim J, Ryu JA, Yardımcı A, Yoon D. Prediction of Antibiotic Resistance in Patients With a Urinary Tract Infection: Algorithm Development and Validation. JMIR Med Inform [Internet]. 2024 Feb 29 [cited 2024 Jun 16];12:e51326. Available from: https://medinform.jmir.org/2024/1/e51326 Oberst M, Boominathan S, Zhou H, Kanjilal S, Sontag D. AMR-UTI: Antimicrobial resistance in urinary tract infections (version 1.0.0). [Internet]. PhysioNet.; 2020 [cited 2024 Aug 18]. Available from: https://physionet.org/content/antimicrobial-resistance-uti/1.0.0/ Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet. Circulation [Internet]. 2000 Jun 13 [cited 2024 Aug 19];101(23):e215–20. Available from: https://doi.org/10.1161/01.CIR.101.23.e215 Gomila A, Carratalà J, Eliakim-Raz N, Shaw E, Wiegand I, Vallejo-Torres L, et al. Risk factors and prognosis of complicated urinary tract infections caused by pseudomonas aeruginosa in hospitalized patients: A retrospective multicenter cohort study. Infect Drug Resist [Internet]. 2018;11:2571–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064759664&doi=10.2147%2fIDR.S185753&partnerID=40&md5=655243cd3f5cbcfe95b3d69384eda4ce Tharmakulasingam M, Gardner B, Ragione RL, Fernando A. Explainable Deep Learning Approach for Multilabel Classification of Antimicrobial Resistance With Missing Labels. IEEE Access [Internet]. 2022 [cited 2024 Nov 5];10:113073–85. Available from: https://ieeexplore.ieee.org/document/9928273/ Faine B, Harland K, Porter B, Liang S, Mohr N. A clinical decision rule identifies risk factors associated with antimicrobial-resistant urinary pathogens in the emergency department: a retrospective validation study. Ann Pharmacother [Internet]. 2015 Jun;49(6):649–55. Available from: https://pubmed.ncbi.nlm.nih.gov/25795004/ González Del Castillo J, Julián-Jiménez A, Gamazo-Del Rio JJ, García-Lamberechts EJ, Llopis-Roca F, Guardiola Tey JM, et al. A multidrug-resistant microorganism infection risk prediction model: development and validation in an emergency medicine population. Eur J Clin Microbiol Infect Dis [Internet]. 2020 Feb [cited 2024 Sep 23];39(2):309–23. Available from: http://link.springer.com/10.1007/s10096-019-03727-4 Amin D, Garzόn-Orjuela N, Garcia Pereira A, Parveen S, Vornhagen H, Vellinga A. Artificial Intelligence to Improve Antibiotic Prescribing: A Systematic Review. Antibiotics [Internet]. 2023 Aug 6 [cited 2024 Oct 7];12(8):1293. Available from: https://www.mdpi.com/2079-6382/12/8/1293 Liu X, Liu X, Jin C, Luo Y, Yang L, Ning X, et al. Prediction models for diagnosis and prognosis of the colonization or infection of multidrug-resistant organisms in adults: a systematic review, critical appraisal, and meta-analysis. Clin Microbiol Infect [Internet]. 2024 Jul 9; Available from: https://www.sciencedirect.com/science/article/pii/S1198743X24003161 Rauseo AM, Aljorayid A, Olsen MA, Larson L, Lipsey KL, Powderly WG, et al. Clinical predictive models of invasive Candida infection: A systematic literature review. Med Mycol [Internet]. 2021 Nov 3 [cited 2024 Oct 14];59(11):1053–67. Available from: https://academic.oup.com/mmy/article/59/11/1053/6327553 Damen JAAG, Hooft L, Schuit E, Debray TPA, Collins GS, Tzoulaki I, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ [Internet]. 2016 May 16 [cited 2024 Oct 14];i2416. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.i2416 Van Calster B, Steyerberg EW, Wynants L, Van Smeden M. There is no such thing as a validated prediction model. BMC Med [Internet]. 2023 Feb 24 [cited 2024 Oct 14];21(1):70. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-023-02779-w Naghavi M, Vollset SE, Ikuta KS, Swetschinski LR, Gray AP, Wool EE, et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet [Internet]. 2024 Sep [cited 2024 Nov 14];404(10459):1199–226. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673624018671 European Centre for Disease Prevention and Control., World Health Organization. Antimicrobial resistance surveillance in Europe 2022: 2020 data. [Internet]. LU: Publications Office; 2022 [cited 2024 Nov 16]. Available from: https://data.europa.eu/doi/10.2900/112339 Wawrysiuk S, Naber K, Rechberger T, Miotla P. Prevention and treatment of uncomplicated lower urinary tract infections in the era of increasing antimicrobial resistance—non-antibiotic approaches: a systemic review. Arch Gynecol Obstet [Internet]. 2019 Oct [cited 2024 Nov 17];300(4):821–8. Available from: http://link.springer.com/10.1007/s00404-019-05256-z Poku E, Cooper K, Cantrell A, Harnan S, Sin MA, Zanuzdana A, et al. Systematic review of time lag between antibiotic use and rise of resistant pathogens among hospitalized adults in Europe. JAC-Antimicrob Resist [Internet]. 2022 Dec 29 [cited 2024 Nov 18];5(1):dlad001. Available from: https://academic.oup.com/jacamr/article/doi/10.1093/jacamr/dlad001/6994059 Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ [Internet]. 2010 Jun 2 [cited 2024 Nov 18];340(may18 2):c2096–c2096. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.c2096 Parikh RB, Teeple S, Navathe AS. Addressing Bias in Artificial Intelligence in Health Care. JAMA [Internet]. 2019 Dec 24 [cited 2024 Nov 20];322(24):2377. Available from: https://jamanetwork.com/journals/jama/fullarticle/2756196 Goldstein BA, Navar AM, Pencina MJ, Ioannidis JPA. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc [Internet]. 2017 Jan 1 [cited 2024 Nov 20];24(1):198–208. Available from: https://academic.oup.com/jamia/article/24/1/198/2631444 Pinto-de-Sá R, Sousa-Pinto B, Costa-de-Oliveira S. Brave New World of Artificial Intelligence: Its Use in Antimicrobial Stewardship—A Systematic Review. Antibiotics [Internet]. 2024 Mar 28 [cited 2024 Nov 21];13(4):307. Available from: https://www.mdpi.com/2079-6382/13/4/307 Mohd Sazlly Lim S, Wong PL, Sulaiman H, Atiya N, Hisham Shunmugam R, Liew SM. Clinical prediction models for ESBL-Enterobacteriaceae colonization or infection: a systematic review. J Hosp Infect [Internet]. 2019 May [cited 2024 Nov 21];102(1):8–16. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0195670119300143 Austin PC, White IR, Lee DS, Van Buuren S. Missing Data in Clinical Research: A Tutorial on Multiple Imputation. Can J Cardiol [Internet]. 2021 Sep [cited 2024 Nov 21];37(9):1322–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0828282X20311119 Peetluk LS, Ridolfi FM, Rebeiro PF, Liu D, Rolla VC, Sterling TR. Systematic review of prediction models for pulmonary tuberculosis treatment outcomes in adults. BMJ Open [Internet]. 2021 Mar [cited 2024 Nov 22];11(3):e044687. Available from: https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2020-044687 Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ [Internet]. 2024 Apr 16 [cited 2025 Apr 15];e078378. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj-2023-078378 Van Calster B, McLernon DJ, Van Smeden M, Wynants L, Steyerberg EW. Calibration: the Achilles heel of predictive analytics. BMC Med [Internet]. 2019 Dec [cited 2025 Apr 16];17(1):230. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1466-7 la Roi-Teeuw HM, van Royen FS, de Hond A, Zahra A, de Vries S, Bartels R, et al. Don’t be misled: 3 misconceptions about external validation of clinical prediction models. J Clin Epidemiol [Internet]. 2024 Aug 1 [cited 2025 Apr 7];172. Available from: https://doi.org/10.1016/j.jclinepi.2024.111387 Collins GS, Moons KGM, Debray TPA, Altman DR, Riley RD. Systematic Reviews of Prediction Models. In: Systematic Reviews in Health Research [Internet]. M. Egger, J.P.T. Higgins and G. Davey Smith. 2022. Available from: https://doi-org.udea.lookproxy.com/10.1002/9781119099369.ch18 |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
162 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf application/x-compressed |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Maestría en Microbiología |
| dc.publisher.place.none.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Escuela de Microbiología |
| dc.publisher.branch.none.fl_str_mv |
Campus Medellín - Ciudad Universitaria |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/2b9316e4-4673-4ea1-96b6-a47ffb9e629f/download https://bibliotecadigital.udea.edu.co/bitstreams/98151d6f-75b8-4691-b41d-4db58a874afa/download https://bibliotecadigital.udea.edu.co/bitstreams/3468c698-492a-4cf7-925d-fdef93beaf6b/download https://bibliotecadigital.udea.edu.co/bitstreams/5122bb30-269a-438f-9b1b-5905ecc2e6cb/download https://bibliotecadigital.udea.edu.co/bitstreams/3bc4e273-b451-4f24-82d8-8d9bfd85d38f/download https://bibliotecadigital.udea.edu.co/bitstreams/771425e2-419d-4595-a4ee-123e7248f53c/download |
| bitstream.checksum.fl_str_mv |
23a6b4ceecd4ac331ccd67fd5c822009 70eed992eec13600a74737779cd850e4 b76e7a76e24cf2f94b3ce0ae5ed275d0 5643bfd9bcf29d560eeec56d584edaa9 a89901be6122b9849d732917fe011a24 689f6b02a1bbdd440c0a8b2b7e6d92a3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052187478654976 |
| spelling |
Cienfuegos Gallet, Astrid VanessaAguirre Acevedo, Daniel CamiloRestrepo Castro, Carlos AndrésMorales Chaverra, Juan PabloGrupo de Investigación en Microbiología Básica y Aplicada-MicrobaRoncancio Villamil, Gustavo EduardoMaya Restrepo, María Angélica2025-05-27T13:32:58Z2025Morales Chaverra, JP. Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con Infección Sintomática de Tracto Urinario Adquirida en la Comunidad: Revisión sistemática de la literatura [Tesis de maestría]. Medellín, Colombia. Universidad de Antioquia; 2025.https://hdl.handle.net/10495/46125Introducción: El uso excesivo de antibióticos de amplio espectro es una causa clave de resistencia antimicrobiana (RAM), asociada a alta morbilidad, mortalidad y costos sanitarios. Los modelos de predicción de RAM, basados en características clínicas del paciente, pueden guiar la terapia empírica y reducir el uso inapropiado de antibióticos. Esta revisión sistemática evaluó modelos de predicción de RAM en pacientes con Infección del Tracto Urinario Sintomática Adquirida en la Comunidad (ISTU-C), analizando calidad del reporte, validez metodológica, predictores, modelos desarrollados y desempeño. Metodología: Se realizó una revisión sistemática siguiendo los lineamientos de PRISMA, CHARMS y TRIPOD-SRMA. Se incluyeron estudios de desarrollo y/o validación de modelos de predicción de RAM en ISTU-C. Se consultaron ocho bases de datos electrónicas (PubMed, ScienceDirect, Embase, Cochrane, entre otras), literatura gris y referencias de estudios. Dos investigadores realizaron selección, extracción y evaluación de calidad mediante TRIPOD y PROBAST. Resultados: De 1089 artículos, se incluyeron 23 estudios. Los desenlaces más comunes fueron BLEE (17.39%), microorganismos multidrogoresistentes (21.74%) y resistencia a betalactámicos, quinolonas, nitrofuranos e inhibidores de folato (47.82%). Los predictores más frecuentes fueron características demográficas (100%), exposición antibiótica (91.30%), comorbilidades (82.60%) y hospitalización previa (72.26%). El 65.22% usó estadística tradicional y 34.78% inteligencia artificial. El 56.52% no reportó manejo de datos faltantes. A pesar de que algunos alcanzaron un desempeño prometedor (AUC-ROC > 0.80), la mayoría se limitaron a validaciones internas. Solo nueve estudios realizaron validación externa. Conclusiones: Aunque prometedores, los modelos enfrentan limitaciones metodológicas. Mejorar la calidad del reporte, estandarizar definiciones de desenlaces y predictores, y validar externamente en poblaciones diversas es clave para su implementación clínica efectiva.Introduction: The excessive use of broad-spectrum antibiotics is a key driver of antimicrobial resistance (AMR), leading to increased morbidity, mortality, and healthcare costs. AMR prediction models based on patient clinical characteristics can guide empirical therapy and reduce inappropriate antibiotic use. This systematic review evaluated AMR prediction models in patients with Community-Acquired Symptomatic Urinary Tract Infections (C-sUTI), analyzing reporting quality, methodological validity, predictors, developed models, and performance. Methods: A systematic review was conducted following PRISMA, CHARMS, and TRIPOD-SRMA guidelines. Studies involving the development and/or validation of AMR prediction models in C-sUTI were included. Eight electronic databases (PubMed, ScienceDirect, Embase, Cochrane, among others), gray literature, and reference lists of relevant studies were searched. Two reviewers independently performed study selection, data extraction, and quality assessment using TRIPOD and PROBAST. Results: Out of 1,089 articles, 23 studies were included. The most common outcomes were ESBL-producing organisms (17.39%), multidrug-resistant organisms (21.74%), and resistance to beta-lactams, quinolones, nitrofurans, and folate inhibitors (47.82%). Frequent predictors included demographics (100%), prior antibiotic exposure (91.30%), comorbidities (82.60%), and previous hospitalization (72.26%). Most models used traditional statistics (65.22%), and some applied artificial intelligence (34.78%). Although some achieved promising performance (AUC-ROC > 0.80), most relied solely on internal validation. Missing data handling was unreported in 56.52% of studies; only nine conducted external validation. Conclusions: Although promising, models face methodological limitations. Enhancing reporting quality, standardizing outcome and predictor definitions, and validating externally across diverse populations are essential for clinical implementation.Modelos de predicción diagnóstica de resistencia antimicrobianaCOL0126131MaestríaMagíster en Microbiología162 páginasapplication/pdfapplication/x-compressedspaUniversidad de AntioquiaMaestría en MicrobiologíaMedellín, ColombiaEscuela de MicrobiologíaCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Modelos de predicción diagnóstica de resistencia antimicrobiana para orientar la selección de la terapia antibiótica empírica en pacientes con infección sintomática de tracto urinario adquirida en la comunidad : revisión sistemática de la literaturaDiagnostic Prediction Models of Antimicrobial Resistance to Guide Empirical Antibiotic Therapy Selection in Patients with Community-Acquired Symptomatic Urinary Tract Infection : A Systematic Literature ReviewTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftMorrison L, Zembower TR. Antimicrobial Resistance. Gastrointest Endosc Clin N Am [Internet]. 2020 Oct [cited 2022 Oct 30];30(4):619–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1052515720300659McEwen SA, Collignon PJ. Antimicrobial Resistance: a One Health Perspective. Aarestrup FM, Schwarz S, Shen J, Cavaco L, editors. Microbiol Spectr [Internet]. 2018 Apr 6 [cited 2023 Mar 8];6(2):6.2.10. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.ARBA-0009-2017Walsh TR, Gales AC, Laxminarayan R, Dodd PC. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLOS Med [Internet]. 2023 Jul 3 [cited 2024 Oct 20];20(7):e1004264. Available from: https://dx.plos.org/10.1371/journal.pmed.1004264World Health Organization (WHO). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. 1st ed. Geneva: World Health Organization; 2022. 1 p.Raman G, Avendano E, Berger S, Menon V. Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections: Systematic review and meta-analysis. BMC Infect Dis [Internet]. 2015 Sep [cited 2022 Oct 30];15(1):1–11. Available from: https://pubmed.ncbi.nlm.nih.gov/26423743/Kuti EL, Patel AA, Coleman CI. Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood stream infection: A meta-analysis. J Crit Care [Internet]. 2008 Mar [cited 2022 Oct 30];23(1):91–100. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0883944107001487Shorr A, Micek S, Welch EC, Doherty JA, Reichley RM, Kollef MH. Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Crit Care Med [Internet]. 2011 Jan [cited 2022 Oct 30];(1):46–51. Available from: https://pubmed.ncbi.nlm.nih.gov/20890186/Poudel AN, Zhu S, Cooper N, Little P, Tarrant C, Hickman M, et al. The economic burden of antibiotic resistance: A systematic review and meta-analysis. Karunasagar I, editor. PLOS ONE [Internet]. 2023 May 8 [cited 2024 Oct 20];18(5):e0285170. Available from: https://dx.plos.org/10.1371/journal.pone.0285170Naylor NR, Atun R, Zhu N, Kulasabanathan K, Silva S, Chatterjee A, et al. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob Resist Infect Control [Internet]. 2018 Apr 25 [cited 2024 Oct 20];7(1):58. Available from: https://aricjournal.biomedcentral.com/articles/10.1186/s13756-018-0336-yTacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis [Internet]. 2018 Mar [cited 2023 Jul 30];18(3):318–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1473309917307533Ventola CL. The Antibiotic Resistance Crisis. PT [Internet]. 2015 Apr;40(4):277–83. Available from: https://pubmed.ncbi.nlm.nih.gov/25859123/Didelot X, Pouwels KB. Machine-learning-assisted selection of antibiotic prescription. Nat Med [Internet]. 2019;25(7):1033–4. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L628434295&from=exportChin TL, McNulty C, Beck C, MacGowan A. Antimicrobial resistance surveillance in urinary tract infections in primary care: Table 1. J Antimicrob Chemother [Internet]. 2016 Oct [cited 2022 Oct 30];71(10):2723–8. Available from: https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkw223Wang R, LaSala C. Role of antibiotic resistance in urinary tract infection management: a cost-effectiveness analysis. Am J Obstet Gynecol [Internet]. 2021 Nov [cited 2022 Oct 30];225(5):550.e1-550.e10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002937821008826Davenport M, Mach KE, Shortliffe LMD, Banaei N, Wang TH, Liao JC. New and developing diagnostic technologies for urinary tract infections. Nat Rev Urol [Internet]. 2017 May [cited 2022 Oct 30];14(5):296–310. Available from: http://www.nature.com/articles/nrurol.2017.20Yang X, Chen H, Zheng Y, Qu S, Wang H, Yi F. Disease burden and long-term trends of urinary tract infections: A worldwide report. Front Public Health [Internet]. 2022 Jul 27 [cited 2023 May 6];10:888205. Available from: https://www.frontiersin.org/articles/10.3389/fpubh.2022.888205/fullSilago V, Moremi N, Mtebe M, Komba E, Masoud S, Mgaya FX, et al. Multidrug-Resistant Uropathogens Causing Community Acquired Urinary Tract Infections among Patients Attending Health Facilities in Mwanza and Dar es Salaam, Tanzania. Antibiotics [Internet]. 2022 Nov 29 [cited 2023 Aug 6];11(12):1718. Available from: https://pubmed.ncbi.nlm.nih.gov/36551375/Maione A, Galdiero E, Cirillo L, Gambino E, Gallo MA, Sasso FP, et al. Prevalence, Resistance Patterns and Biofilm Production Ability of Bacterial Uropathogens from Cases of Community-Acquired Urinary Tract Infections in South Italy. Pathogens [Internet]. 2023 Mar 29 [cited 2023 Aug 6];12(4):537. Available from: https://pubmed.ncbi.nlm.nih.gov/37111423/Foxman B. Epidemiology of Urinary Tract Infections: Incidence, Morbidity, and Economic Costs. Am J Med [Internet]. 2002 Jul 8 [cited 2023 Jul 22];113 Suppl 1A:5S-13S. Available from: https://pubmed.ncbi.nlm.nih.gov/12113866/Cardwell SM, Crandon JL, Nicolau DP, McClure MH, Nailor MD. Epidemiology and economics of adult patients hospitalized with urinary tract infections. Hosp Pract [Internet]. 2016 Jan [cited 2023 Jul 30];44(1):33–40. Available from: https://pubmed.ncbi.nlm.nih.gov/26673518/Öztürk R, Murt A. Epidemiology of urological infections: a global burden. World J Urol [Internet]. 2020 Nov [cited 2023 Jul 30];38(11):2669–79. Available from: http://link.springer.com/10.1007/s00345-019-03071-4Dunne MW, Puttagunta S, Aronin SI, Brossette S, Murray J, Gupta V. Impact of Empirical Antibiotic Therapy on Outcomes of Outpatient Urinary Tract Infection Due to Nonsusceptible Enterobacterales. Microbiol Spectr [Internet]. 2022 Feb [cited 2022 Oct 30];10(1). Available from: https://pubmed.ncbi.nlm.nih.gov/35138150/Ranjan Dash N, Albataineh MT, Alhourani N, Khoudeir AM, Ghanim M, Wasim M, et al. Community-acquired urinary tract infections due to extended-spectrum β -lactamase-producing organisms in United Arab Emirates. Travel Med Infect Dis [Internet]. 2018 Mar [cited 2023 Aug 6];22:46–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1477893918300073Klingeberg A, Noll I, Willrich N, Feig M, Emrich D, Zill E, et al. Antibiotic-Resistant E. coli in Uncomplicated Community-Acquired Urinary Tract Infection. Dtsch Ärztebl Int [Internet]. 2018 Jul 23 [cited 2023 Aug 6]; Available from: https://pubmed.ncbi.nlm.nih.gov/30135009/Garcia-Bustos V, Escrig AIR, López CC, Estellés RA, Jerusalem K, Cabañero-Navalón MD, et al. Prospective cohort study on hospitalized patients with suspected urinary tract infection and risk factors for multidrug resistance. Sci Rep [Internet]. 2021 Jun 7 [cited 2022 Jul 22];11(1). Available from: https://pubmed.ncbi.nlm.nih.gov/34099754/Strich JR, Heil EL, Masur H. Considerations for Empiric Antimicrobial Therapy in Sepsis and Septic Shock in an Era of Antimicrobial Resistance. J Infect Dis [Internet]. 2020 Jul 21 [cited 2022 Oct 30];222(Supplement_2):S119–31. Available from: https://pubmed.ncbi.nlm.nih.gov/32691833/Lewin-Epstein O, Baruch S, Hadany L, Stein GY, Obolski U. Predicting Antibiotic Resistance in Hospitalized Patients by Applying Machine Learning to Electronic Medical Records. Clin Infect Dis [Internet]. 2021 Jun 1 [cited 2022 Oct 30];72(11):e848–55. Available from: https://academic.oup.com/cid/article/72/11/e848/5929660Ahmed H, Farewell D, Francis NA, Paranjothy S, Butler CC. Choice of Empirical Antibiotic Therapy and Adverse Outcomes in Older Adults With Suspected Urinary Tract Infection: Cohort Study. Open Forum Infect Dis [Internet]. 2019 Mar 1 [cited 2022 Oct 30];6(3):ofz039. Available from: https://academic.oup.com/ofid/article/doi/10.1093/ofid/ofz039/5298200Akinosoglou K, Koutsouri CP, deLastic AL, Kolosaka M, Davoulos C, Niarou V, et al. Patterns, price and predictors of successful empiric antibiotic therapy in a real-world setting. J Clin Pharm Ther [Internet]. 2021 Jun [cited 2022 Nov 3];46(3):846–52. Available from: https://pubmed-ncbi-nlm-nih-gov.udea.lookproxy.com/33554360/Zhu H, Chen Y, Hang Y, Luo H, Fang X, Xiao Y, et al. Impact of inappropriate empirical antibiotic treatment on clinical outcomes of urinary tract infections caused by Escherichia coli: a retrospective cohort study. J Glob Antimicrob Resist [Internet]. 2021 Sep [cited 2023 Feb 19];26:148–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213716521001478Yelin I, Snitser O, Novich G, Katz R, Tal O, Parizade M, et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat Med [Internet]. 2019 Jul [cited 2022 Oct 25];25(7):1143–52. Available from: https://www.nature.com/articles/s41591-019-0503-6Rich SN, Jun I, Bian J, Boucher C, Cherabuddi K, Morris Jr JG, et al. Development of a Prediction Model for Antibiotic-Resistant Urinary Tract Infections Using Integrated Electronic Health Records from Multiple Clinics in North-Central Florida. Infect Dis Ther [Internet]. 2022 Oct [cited 2022 Nov 2];11(5):1869–82. Available from: https://pubmed.ncbi.nlm.nih.gov/35908268/Delory T, Jeanmougin P, Lariven S, Aubert JP, Peiffer-Smadja N, Boëlle PY, et al. A computerized decision support system (CDSS) for antibiotic prescription in primary care-Antibioclic: implementation, adoption and sustainable use in the era of extended antimicrobial resistance. J Antimicrob Chemother [Internet]. 2020 Aug [cited 2022 Nov 2];75(8):2353–62. Available from: https://pubmed.ncbi.nlm.nih.gov/32357226/Lodise TP, Bonine NG, Ye JM, Folse HJ, Gillard P. Development of a bedside tool to predict the probability of drug-resistant pathogens among an adult population with gram-negative infections. Open Forum Infect Dis [Internet]. 2019 Aug [cited 2022 Oct 30];5:S351–2. Available from: https://pubmed.ncbi.nlm.nih.gov/31412809/Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating [Internet]. Cham: Springer International Publishing; 2019 [cited 2023 Jul 31]. (Statistics for Biology and Health). Available from: http://link.springer.com/10.1007/978-3-030-16399-0Van Smeden M, Reitsma JB, Riley RD, Collins GS, Moons KG. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol [Internet]. 2021 Apr [cited 2023 Jul 30];132:142–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0895435621000135Laka M, Milazzo A, Merlin T. Can evidence-based decision support tools transform antibiotic management? A systematic review and meta-analyses. J Antimicrob Chemother [Internet]. 2020 May 1 [cited 2023 May 6];75(5):1099–111. Available from: https://academic.oup.com/jac/article/75/5/1099/5710709Kanjilal S, Oberst M, Boominathan S, Zhou H, Hooper DC, Sontag D. A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated urinary tract infection. Sci Transl Med [Internet]. 2020;12(568). Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2008495943&from=exportShah A, Justo JA, Bookstaver PB, Kohn J, Albrecht H, Al-Hasan MN. Application of fluoroquinolone resistance score in management of complicated urinary tract infections. Antimicrob Agents Chemother [Internet]. 2017 May [cited 2022 Oct 30];61(5). Available from: https://pubmed.ncbi.nlm.nih.gov/28193655/Ben Ayed H, Koubaa M, Hammami F, Marrakchi C, Rekik K, Ben Jemaa T, et al. Performance of an Easy and Simple New Scoring Model in Predicting Multidrug-Resistant Enterobacteriaceae in Community-Acquired Urinary Tract Infections. Open Forum Infect Dis [Internet]. 2019;6(4). Available from: https://pubmed.ncbi.nlm.nih.gov/30949542/Neugebauer M, Ebert M, Vogelmann R. A clinical decision support system improves antibiotic therapy for upper urinary tract infection in a randomized single-blinded study. BMC Health Serv Res [Internet]. 20200306th ed. 2020 Mar 6 [cited 2022 Aug 22];20(1):185. Available from: https://pubmed.ncbi.nlm.nih.gov/32143630/Liu H, Qiu S, Chen M, Lyu J, Yu G, Xue L. A clinical prediction tool for extended-spectrum β-lactamase-producing Enterobacteriaceae urinary tract infection. BMC Infect Dis [Internet]. 20220113th ed. 2022 Jan 13 [cited 2023 Jul 31];22(1):50. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-022-07040-yDebray TPA, Damen JAAG, Snell KIE, Ensor J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ [Internet]. 2017 Jan 5 [cited 2023 May 1];i6460. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.i6460Paterson DL. Impact of Antibiotic Resistance in Gram‐Negative Bacilli on Empirical and Definitive Antibiotic Therapy. Clin Infect Dis [Internet]. 2008 Sep 15 [cited 2023 Apr 8];47(S1):S14–20. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/590062Zilberberg MD, Nathanson BH, Sulham K, Fan W, Shorr AF. Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis. BMC Infect Dis [Internet]. 2017;17(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018470884&doi=10.1186%2fs12879-017-2383 z&partnerID=40&md5=da7a9d70432a18d67ecf92d5a7cab3aeBader MS, Loeb M, Brooks AA. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med [Internet]. 2017 Feb 17 [cited 2022 Oct 30];129(2):242–58. Available from: https://www.tandfonline.com/doi/full/10.1080/00325481.2017.1246055Horcajada JP, Shaw E, Padilla B, Pintado V, Calbo E, Benito N, et al. Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: a prospective multicentre cohort study in the era of antimicrobial resistance. Clin Microbiol Infect [Internet]. 2013 Oct [cited 2023 Apr 9];19(10):962–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1198743X14629839Organización Mundial de la Salud. Plan de acción mundial sobre la resistencia a los antimicrobianos [Internet]. Ginebra: Organización Mundial de la Salud; 2016 [cited 2022 Oct 30]. 30 p. Available from: https://apps.who.int/iris/handle/10665/255204Müller L, Srinivasan A, Abeles SR, Rajagopal A, Torriani FJ, Aronoff-Spencer E. A Risk-Based Clinical Decision Support System for Patient-Specific Antimicrobial Therapy (iBiogram): Design and Retrospective Analysis. J Med Internet Res [Internet]. 2021 [cited 2023 Apr 3];23(12). Available from: https://pubmed.ncbi.nlm.nih.gov/34870601/Hindler JF, Stelling J. Analysis and Presentation of Cumulative Antibiograms: A New Consensus Guideline from the Clinical and Laboratory Standards Institute. Clin Infect Dis [Internet]. 2007 Mar 15 [cited 2024 Nov 1];44(6):867–73. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/511864Linhares I, Raposo T, Rodrigues A, Almeida A. Frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections: a ten-year surveillance study (2000–2009). BMC Infect Dis [Internet]. 2013 Dec [cited 2023 Apr 9];13(1):19. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-13-19Hirsch EB, Zucchi PC, Chen A, Raux BR, Kirby JE, McCoy C, et al. Susceptibility of Multidrug-Resistant Gram-Negative Urine Isolates to Oral Antibiotics. Antimicrob Agents Chemother [Internet]. 2016 May [cited 2023 Apr 9];60(5):3138–40. Available from: https://journals.asm.org/doi/10.1128/AAC.02961-15Ironmonger D, Edeghere O, Gossain S, Hawkey PM. Use of antimicrobial resistance information and prescribing guidance for management of urinary tract infections: survey of general practitioners in the West Midlands. BMC Infect Dis [Internet]. 2016 Dec [cited 2023 Apr 9];16(1):226. Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-016-1559-2Bischoff S, Walter T, Gerigk M, Ebert M, Vogelmann R. Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect Dis [Internet]. 2018 Dec [cited 2023 Apr 9];18(1):56. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-018-2960-9Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med [Internet]. 2019 Apr 4 [cited 2023 Apr 9];380(14):1347–58. Available from: https://pubmed.ncbi.nlm.nih.gov/30943338/Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Georgiou P, Lescure FX, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect [Internet]. 2020 May [cited 2023 Apr 9];26(5):584–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1198743X1930494XGomila A, Shaw E, Carratalà J, Leibovici L, Tebé C, Wiegand I, et al. Predictive factors for multidrug-resistant gram-negative bacteria among hospitalised patients with complicated urinary tract infections. Antimicrob Resist Infect Control [Internet]. 2018;7(1). Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L623869500&from=exportTan C, Chlebicki M. Urinary tract infections in adults. Singapore Med J [Internet]. 2016 Sep [cited 2023 Jul 9];57(09):485–90. Available from: http://www.smj.org.sg/article/urinary-tract-infections-adultsCenters for Disease Control and Prevention (CDC). Urinary Tract Infection (Catheter-Associated Urinary Tract Infection [CAUTI] and Non-Catheter-Associated Urinary Tract Infection [UTI]) Events [Internet]. 2023 Jan. Available from: https://www.cdc.gov/nhsn/pdfs/pscmanual/7psccauticurrent.pdfDonelli G, editor. Advances in Microbiology, Infectious Diseases and Public Health: Volume 15 [Internet]. Cham: Springer International Publishing; 2021 [cited 2024 Oct 20]. (Advances in Experimental Medicine and Biology; vol. 1323). Available from: https://link.springer.com/10.1007/978-3-030-71202-0Siegman‐Igra Y, Fourer B, Orni‐Wasserlauf R, Golan Y, Noy A, Schwartz D, et al. Reappraisal of Community‐Acquired Bacteremia: A Proposal of a New Classification for the Spectrum of Acquisition of Bacteremia. Clin Infect Dis [Internet]. 2002 Jun [cited 2024 Oct 20];34(11):1431–9. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/339809Kabugo D, Kizito S, Ashok DD, Kiwanuka AG, Nabimba R, Namunana S, et al. Factors associated with community-acquired urinary tract infections among adults attending assessment centre, Mulago Hospital Uganda. Afr Health Sci [Internet]. 2017 Mar 7 [cited 2024 Oct 20];16(4):1131. Available from: https://www.ajol.info/index.php/ahs/article/view/152550Boev C, Kiss E. Hospital-Acquired Infections: Current Trends and Prevention. Crit Care Nurs Clin North Am [Internet]. 2017 Mar [cited 2024 Oct 20];29(1):51–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S089958851630079XTernes B, Wagenlehner FME. Leitliniengerechte Therapie von Harnwegsinfektionen. Urol [Internet]. 2020 May [cited 2023 Aug 19];59(5):550–8. Available from: http://link.springer.com/10.1007/s00120-020-01174-0Kang CI, Kim J, Park DW, Kim BN, Ha US, Lee SJ, et al. Clinical Practice Guidelines for the Antibiotic Treatment of Community-Acquired Urinary Tract Infections. Infect Chemother [Internet]. 2018 [cited 2023 Feb 25];50(1):67. Available from: https://icjournal.org/DOIx.php?id=10.3947/ic.2018.50.1.67Meiland R. Association Between Escherichia coli Bacteriuria and Renal Function in Women: Long-term Follow-up. Arch Intern Med [Internet]. 2007 Feb 12 [cited 2023 Aug 19];167(3):253. Available from: http://archinte.jamanetwork.com/article.aspx?doi=10.1001/archinte.167.3.253Bazira PJ. Anatomy of the lower urinary tract. Surg Oxf [Internet]. 2022 Aug [cited 2022 Aug 12];40(8):489–500. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0263931922001028Hickling DR, Sun TT, Wu XR. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection. Mulvey MA, Stapleton AE, Klumpp DJ, editors. Microbiol Spectr [Internet]. 2015 Jul 2 [cited 2022 Aug 12];3(4):3.4.21. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.UTI-0016-2012Andreu A. Patogenia de las infecciones del tracto urinario. Enfermedades Infecc Microbiol Clínica [Internet]. 2005 Dec [cited 2023 Aug 19];23:15–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0213005X05752101Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol-Ren Physiol [Internet]. 2009 Dec [cited 2023 Aug 13];297(6):F1477–501. Available from: https://www.physiology.org/doi/10.1152/ajprenal.00327.2009McLellan LK, Hunstad DA. Urinary Tract Infection: Pathogenesis and Outlook. Trends Mol Med [Internet]. 2016 Nov [cited 2023 Jul 10];22(11):946–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1471491416301186Gupta K, Trautner BW. Urinary Tract Infections, Pyelonephritis, and Prostatitis. In: Loscalzo J, Fauci A, Kasper D, Hauser S, Longo D, Jameson JL, editors. Harrison’s Principles of Internal Medicine, 21e [Internet]. New York, NY: McGraw-Hill Education; 2022 [cited 2023 Jul 11]. Available from: accessmedicine.mhmedical.com/content.aspx?aid=1201012844Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol [Internet]. 2015 May [cited 2022 Oct 30];13(5):269–84. Available from: http://www.nature.com/articles/nrmicro3432Kline KA, Dodson KW, Caparon MG, Hultgren SJ. A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol [Internet]. 2010 May [cited 2023 Aug 13];18(5):224–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966842X10000405Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA. Chaperone-Usher Fimbriae of Escherichia coli. Wandersman C, editor. PLoS ONE [Internet]. 2013 Jan 30 [cited 2023 Aug 13];8(1):e52835. Available from: https://dx.plos.org/10.1371/journal.pone.0052835Waksman G, Hultgren SJ. Structural biology of the chaperone–usher pathway of pilus biogenesis. Nat Rev Microbiol [Internet]. 2009 Nov [cited 2023 Aug 13];7(11):765–74. Available from: https://www.nature.com/articles/nrmicro2220Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A. The chaperone/usher pathways of Pseudomonas aeruginosa : Identification of fimbrial gene clusters ( cup ) and their involvement in biofilm formation. Proc Natl Acad Sci [Internet]. 2001 Jun 5 [cited 2023 Aug 13];98(12):6911–6. Available from: https://pnas.org/doi/full/10.1073/pnas.111551898Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME. Complicated Catheter-Associated Urinary Tract Infections Due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev [Internet]. 2008 Jan [cited 2023 Aug 13];21(1):26–59. Available from: https://journals.asm.org/doi/10.1128/CMR.00019-07Chorell E, Pinkner JS, Bengtsson C, Banchelin TSL, Edvinsson S, Linusson A, et al. Mapping pilicide anti-virulence effect in Escherichia coli, a comprehensive structure–activity study. Bioorg Med Chem [Internet]. 2012 May [cited 2023 Aug 13];20(9):3128–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968089612000788Kostakioti M, Hadjifrangiskou M, Cusumano CK, Hannan TJ, Janetka JW, Hultgren SJ. Distinguishing the Contribution of Type 1 Pili from That of Other QseB-Misregulated Factors when QseC Is Absent during Urinary Tract Infection. Bliska JB, editor. Infect Immun [Internet]. 2012 Aug [cited 2023 Jul 10];80(8):2826–34. Available from: https://journals.asm.org/doi/10.1128/IAI.00283-12Kaur R, Kaur R. Symptoms, risk factors, diagnosis and treatment of urinary tract infections. Postgrad Med J [Internet]. 2021 Dec 1 [cited 2023 Aug 21];97(1154):803–12. Available from: https://academic.oup.com/pmj/article/97/1154/803/6967180Foxman B. Urinary Tract Infection Syndromes. Infect Dis Clin North Am [Internet]. 2014 Mar [cited 2022 Nov 1];28(1):1–13. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891552013000743Geerlings SE. Clinical Presentations and Epidemiology of Urinary Tract Infections. Mulvey MA, Stapleton AE, Klumpp DJ, editors. Microbiol Spectr [Internet]. 2016 Oct 14 [cited 2023 Aug 21];4(5):4.5.03. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.UTI-0002-2012Wagenlehner FME, Pilatz A, Weidner W. Urosepsis—from the view of the urologist. Int J Antimicrob Agents [Internet]. 2011 Dec [cited 2023 Aug 21];38:51–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857911003669Daniel M, Szymanik-Grzelak H, Sierdziński J, Podsiadły E, Kowalewska-Młot M, Pańczyk-Tomaszewska M. Epidemiology and Risk Factors of UTIs in Children—A Single-Center Observation. J Pers Med [Internet]. 2023 Jan 10 [cited 2023 Aug 21];13(1):138. Available from: https://www.mdpi.com/2075-4426/13/1/138Tenney J, Hudson N, Alnifaidy H, Li JTC, Fung KH. Risk factors for aquiring multidrug-resistant organisms in urinary tract infections: A systematic literature review. Saudi Pharm J [Internet]. 2018 Jul [cited 2022 Oct 3];26(5):678–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1319016418300471Lee DS, Lee SJ, Choe HS. Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. BioMed Res Int [Internet]. 2018 Sep 26 [cited 2023 Aug 21];2018:1–14. Available from: https://www.hindawi.com/journals/bmri/2018/7656752/Mahony M, McMullan B, Brown J, Kennedy SE. Multidrug-resistant organisms in urinary tract infections in children. Pediatr Nephrol [Internet]. 2020 Sep [cited 2023 Sep 5];35(9):1563–73. Available from: http://link.springer.com/10.1007/s00467-019-04316-5Waller TA, Pantin SAL, Yenior AL, Pujalte GGA. Urinary Tract Infection Antibiotic Resistance in the United States. Prim Care Clin Off Pract [Internet]. 2018 Sep [cited 2022 Oct 30];45(3):455–66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0095454318300423Tandogdu Z, Wagenlehner FME. Global epidemiology of urinary tract infections. Curr Opin Infect Dis [Internet]. 2016 Feb [cited 2023 Aug 19];29(1):73–9. Available from: https://pubmed.ncbi.nlm.nih.gov/26694621/Nicolle LE. Urinary Tract Infection. Crit Care Clin [Internet]. 2013 Jul [cited 2023 Aug 19];29(3):699–715. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0749070413000377Laupland KB, Ross T, Pitout JDD, Church DL, Gregson DB. Community-onset Urinary Tract Infections: A Population-based Assessment. Infection [Internet]. 2007 Jun [cited 2023 Aug 21];35(3):150–3. Available from: http://link.springer.com/10.1007/s15010-007-6180-2Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol Immunol [Internet]. 2019 Apr [cited 2023 Aug 21];108:56–67. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0161589018306357Kahlmeter G, Poulsen HO. Antimicrobial susceptibility of Escherichia coli from community-acquired urinary tract infections in Europe: the ECO·SENS study revisited. Int J Antimicrob Agents [Internet]. 2012 Jan [cited 2023 Aug 21];39(1):45–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857911003761Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, Van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR- P. aeruginosa ). Clin Infect Dis [Internet]. 2022 Aug 25 [cited 2024 Jan 30];75(2):187–212. Available from: https://academic.oup.com/cid/article/75/2/187/6570801Chen YH, Ko WC, Hsueh PR. Emerging resistance problems and future perspectives in pharmacotherapy for complicated urinary tract infections. Expert Opin Pharmacother [Internet]. 2013 Apr [cited 2023 Aug 21];14(5):587–96. Available from: http://www.tandfonline.com/doi/full/10.1517/14656566.2013.778827Paterson DL. Resistance in Gram-Negative Bacteria: Enterobacteriaceae. Am J Med [Internet]. 2006 Jun [cited 2023 Aug 21];119(6):S20–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002934306003445Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β -lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrob Resist [Internet]. 2021 Jul 12 [cited 2024 Jan 30];3(3):dlab092. Available from: https://academic.oup.com/jacamr/article/doi/10.1093/jacamr/dlab092/6322891Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, Van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase–Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii , and Stenotrophomonas maltophilia Infections. Clin Infect Dis [Internet]. 2022 Jul 6 [cited 2024 Feb 4];74(12):2089–114. Available from: https://academic.oup.com/cid/article/74/12/2089/6453394Meini S, Tascini C, Cei M, Sozio E, Rossolini GM. AmpC β-lactamase-producing Enterobacterales: what a clinician should know. Infection [Internet]. 2019 Jun 1;47(3):363–75. Available from: https://doi.org/10.1007/s15010-019-01291-9Garau J. Other antimicrobials of interest in the era of extended-spectrum β-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin Microbiol Infect [Internet]. 2008 Jan [cited 2023 Aug 21];14:198–202. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1198743X1460495XPendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther [Internet]. 2013 Mar [cited 2023 Aug 21];11(3):297–308. Available from: http://www.tandfonline.com/doi/full/10.1586/eri.13.12Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis. 2021;40(10):2053–68.Queenan Anne Marie, Bush Karen. Carbapenemases: the Versatile β-Lactamases. Clin Microbiol Rev [Internet]. 2007 Jul 1 [cited 2024 Feb 5];20(3):440–58. Available from: https://doi.org/10.1128/cmr.00001-07Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci [Internet]. 2018 Feb 23 [cited 2024 Feb 5];5:16. Available from: http://journal.frontiersin.org/article/10.3389/fmolb.2018.00016/fullRada AM, De La Cadena E, Agudelo C, Capataz C, Orozco N, Pallares C, et al. Dynamics of bla KPC-2 Dissemination from Non-CG258 Klebsiella pneumoniae to Other Enterobacterales via IncN Plasmids in an Area of High Endemicity. Antimicrob Agents Chemother [Internet]. 2020 Nov 17 [cited 2024 Feb 5];64(12):e01743-20. Available from: https://journals.asm.org/doi/10.1128/AAC.01743-20Hobson CA, Pierrat G, Tenaillon O, Bonacorsi S, Bercot B, Jaouen E, et al. Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrob Agents Chemother [Internet]. 2022 Sep 20 [cited 2024 Feb 5];66(9):e00447-22. Available from: https://journals.asm.org/doi/10.1128/aac.00447-22Denakpo E, Naas T, Iorga BI. An updated patent review of metallo-β-lactamase inhibitors (2020–2023). Expert Opin Ther Pat [Internet]. 2023 Aug 3 [cited 2024 Feb 5];33(7–8):523–38. Available from: https://www.tandfonline.com/doi/full/10.1080/13543776.2023.2262763Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM Metallo--Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev. 2019;32(2).Boyd Sara E., Holmes Alison, Peck Richard, Livermore David M., Hope William. OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother [Internet]. 2022 Jul 20 [cited 2024 Feb 5];66(8):e00216-22. Available from: https://doi.org/10.1128/aac.00216-22Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin Microbiol Rev [Internet]. 2019 Dec 18 [cited 2024 Feb 5];33(1):e00102-19. Available from: https://journals.asm.org/doi/10.1128/CMR.00102-19Zheng D, Bergen PJ, Landersdorfer CB, Hirsch EB. Differences in Fosfomycin Resistance Mechanisms between Pseudomonas aeruginosa and Enterobacterales. Antimicrob Agents Chemother [Internet]. 2022 Feb 15 [cited 2024 Feb 5];66(2):e01446-21. Available from: https://journals.asm.org/doi/10.1128/AAC.01446-21Newman J, Floyd R, Fothergill J. Invasion and diversity in Pseudomonas aeruginosa urinary tract infections. J Med Microbiol [Internet]. 2022 Mar 9 [cited 2024 Feb 5];71(3). Available from: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.001458Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev [Internet]. 2019 Sep 18 [cited 2024 Feb 5];32(4):e00031-19. Available from: https://journals.asm.org/doi/10.1128/CMR.00031-19Botelho J, Grosso F, Peixe L. Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a blaGES-6 carbapenemase. J Antimicrob Chemother [Internet]. 2018 Jan 1 [cited 2024 Feb 5];73(1):77–83. Available from: http://academic.oup.com/jac/article/73/1/77/4339348Kocsis B, Toth A, Gulyas D, Ligeti B, Katona K, Rokusz L, et al. Acquired qnrVC1 and bla NDM-1 resistance markers in an international high-risk Pseudomonas aeruginosa ST773 clone. J Med Microbiol [Internet]. 2019 Mar 1 [cited 2024 Feb 6];68(3):336–8. Available from: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.000927Martínez-Martínez L, Calvo J. El problema creciente de la resistencia antibiótica en bacilos gramnegativos: situación actual. Enfermedades Infecc Microbiol Clínica [Internet]. 2010 Sep [cited 2024 Feb 6];28:25–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0213005X10700276Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of Enterococci. Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI, editors. Microbiol Spectr [Internet]. 2019 Jul 19 [cited 2024 Feb 6];7(4):7.4.9. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.GPP3-0053-2018García-Solache M, Rice LB. The Enterococcus: a Model of Adaptability to Its Environment. Clin Microbiol Rev [Internet]. 2019 Mar 20 [cited 2024 Feb 6];32(2):e00058-18. Available from: https://journals.asm.org/doi/10.1128/CMR.00058-18Gagetti P, Bonofiglio L, García Gabarrot G, Kaufman S, Mollerach M, Vigliarolo L, et al. Resistance to β-lactams in enterococci. Rev Argent Microbiol [Internet]. 2019 Apr 1;51(2):179–83. Available from: https://www.sciencedirect.com/science/article/pii/S032575411830083XAssouma FF, Sina H, Dossou AD, Socohou A, Hounsou MC, Avogbe PH, et al. Antibiotic Resistance Profiling of Pathogenic Staphylococcus Species from Urinary Tract Infection Patients in Benin. Hassan S, editor. BioMed Res Int [Internet]. 2023 May 15 [cited 2024 Feb 6];2023:1–9. Available from: https://www.hindawi.com/journals/bmri/2023/6364128/Saenkham-Huntsinger P, Hyre AN, Hanson BS, Donati GL, Adams LG, Ryan C, et al. Copper Resistance Promotes Fitness of Methicillin-Resistant Staphylococcus aureus during Urinary Tract Infection. Justice S, editor. mBio [Internet]. 2021 Oct 26 [cited 2024 Feb 6];12(5):e02038-21. Available from: https://journals.asm.org/doi/10.1128/mBio.02038-21Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI, editors. Microbiol Spectr [Internet]. 2019 Apr 12 [cited 2024 Feb 6];7(2):7.2.18. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.GPP3-0057-2018Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. 2020Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev [Internet]. 2018 Oct [cited 2024 Feb 8];31(4):e00020-18. Available from: https://journals.asm.org/doi/10.1128/CMR.00020-18Akoachere JFTK, Yvonne S, Akum NH, Seraphine EN. Etiologic profile and antimicrobial susceptibility of community-acquired urinary tract infection in two Cameroonian towns. BMC Res Notes [Internet]. 2012;5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860590429&doi=10.1186%2f1756-0500-5-219&partnerID=40&md5=37e95f2cfa4eb1b69104444926c77d19Chu CM, Lowder JL. Diagnosis and treatment of urinary tract infections across age groups. Am J Obstet Gynecol [Internet]. 2018 Jul [cited 2023 Aug 23];219(1):40–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002937817328053Gupta K, Bhadelia N. Management of Urinary Tract Infections From Multidrug-Resistant Organisms. Infect Dis Clin North Am [Internet]. 2014 Mar [cited 2023 Aug 21];28(1):49–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891552013000809Auer S, Wojna A, Hell M. Oral Treatment Options for Ambulatory Patients with Urinary Tract Infections Caused by Extended-Spectrum-β-Lactamase-Producing Escherichia coli. Antimicrob Agents Chemother [Internet]. 2010 Sep [cited 2023 Aug 23];54(9):4006–8. Available from: https://journals.asm.org/doi/10.1128/AAC.01760-09Allison MG, Heil EL, Hayes BD. Appropriate Antibiotic Therapy. Emerg Med Clin North Am [Internet]. 2017 Feb [cited 2023 Sep 22];35(1):25–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0733862716300645Hebert C, Gao Y, Rahman P, Dewart C, Lustberg M, Pancholi P, et al. Prediction of antibiotic susceptibility for urinary tract infection in a hospital setting. Antimicrob Agents Chemother. 2020;64(7):e02236-19.Weinstein EJ, Han JH, Lautenbach E, Nachamkin I, Garrigan C, Bilker WB, et al. A Clinical Prediction Tool for Extended-Spectrum Cephalosporin Resistance in Community-Onset Enterobacterales Urinary Tract Infection. Open Forum Infect Dis [Internet]. 2019 Apr 1 [cited 2023 Sep 17];6(4). Available from: https://academic.oup.com/ofid/article/doi/10.1093/ofid/ofz164/5426452Niño SF, Maldonado N, Biojo J, Ospina RM, Velásquez P, Aguirre H, et al. [Development and validation of a diagnostic model of antimicrobial resistance by extended-spectrum beta-lactamases in community-acquired urinary tract infections. How to adjust the prediction in variable outcome prevalences? The usefulness of contracting predictors with LASSO regression]. Rev Chil Infectol. 2020 Dec;37(6):683–9.Tandan M, Timilsina M, Cormican M, Vellinga A. Role of patient descriptors in predicting antimicrobial resistance in urinary tract infections using a decision tree approach: A retrospective cohort study. Int J Med Inf [Internet]. 2019 Jul 1 [cited 2022 Aug 20];127:127–33. Available from: https://www.sciencedirect.com/science/article/pii/S1386505618302351Steyerberg EW, Moons KGM, Van Der Windt DA, Hayden JA, Perel P, Schroter S, et al. Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. PLoS Med [Internet]. 2013 Feb 5 [cited 2023 Sep 10];10(2):e1001381. Available from: https://dx.plos.org/10.1371/journal.pmed.1001381Tang R, Luo R, Tang S, Song H, Chen X. Machine learning in predicting antimicrobial resistance: a systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2022 Nov [cited 2024 Oct 7];60(5–6):106684. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857922002114Tharmakulasingam M, Wang W, Kerby M, Ragione RL, Fernando A. TransAMR: An Interpretable Transformer Model for Accurate Prediction of Antimicrobial Resistance Using Antibiotic Administration Data. IEEE Access [Internet]. 2023 [cited 2024 Jun 16];11:75337–50. Available from: https://ieeexplore.ieee.org/document/10185002/Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Ann Intern Med [Internet]. 2015 Jan 6 [cited 2023 Sep 10];162(1):W1–73. Available from: https://www.acpjournals.org/doi/10.7326/M14-0698Collins GS, Reitsma JB, Altman DG, Moons K. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med [Internet]. 2015 [cited 2023 Apr 30];13(1):1. Available from: http://www.biomedcentral.com/1741-7015/13/1Bonnett LJ, Snell KIE, Collins GS, Riley RD. Guide to presenting clinical prediction models for use in clinical settings. BMJ [Internet]. 2019 Apr 17 [cited 2023 Sep 22];l737. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.l737Andaur Navarro CL, Damen JAA, Van Smeden M, Takada T, Nijman SWJ, Dhiman P, et al. Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models. J Clin Epidemiol [Internet]. 2023 Feb [cited 2023 Sep 22];154:8–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0895435622003006Zhang Z, Beck MW, Winkler DA, Huang B, Sibanda W, Goyal H. Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Ann Transl Med [Internet]. 2018 Jun [cited 2023 Sep 22];6(11):216–216. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035992/Song Y yan, Lu Y. Decision tree methods: applications for classification and prediction. 25 [Internet]. 2015 Apr;27(2):130–5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ [Internet]. 2021 Mar 29 [cited 2023 Mar 11];n71. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.n71Snell KIE, Levis B, Damen JAA, Dhiman P, Debray TPA, Hooft L, et al. Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: checklist for systematic reviews and meta-analyses (TRIPOD-SRMA). BMJ [Internet]. 2023 May 3 [cited 2024 Dec 16];e073538. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj-2022-073538Moons KGM, de Groot JAH, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist. PLoS Med [Internet]. 2014 Oct 14 [cited 2023 Feb 25];11(10):e1001744. Available from: https://dx.plos.org/10.1371/journal.pmed.1001744Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med [Internet]. 2019 Jan 1 [cited 2023 Feb 28];170(1):51. Available from: http://annals.org/article.aspx?doi=10.7326/M18-1376Faine BA, Mohr N, Vakkalanka P, Gao AS, Liang SY. Validation of a Clinical Decision Rule to Identify Risk Factors Associated With Multidrug-Resistant Urinary Pathogens in the Emergency Department. Ann Pharmacother [Internet]. 2019;53(1):56–60. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052562081&doi=10.1177%2f1060028018792680&partnerID=40&md5=77d3f48ebcd6f87229d13eec02872ac7Cooley LF, Cohen JE, Chen L, Schaeffer AJ. Algorithms to Enhance Empiric Antimicrobial Choice for Outpatients With Afebrile Complicated Cystitis Reflects Importance of Status of the Urinary Tract and Patient Place of Residence. Urology [Internet]. 2020 Nov [cited 2024 Aug 13];145:127–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0090429520310347García-Tello A, Gimbernat H, Redondo C, Meilán E, Arana DM, Cacho J, et al. Prediction of infection caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: development of a clinical decision-making nomogram. Scand J Urol [Internet]. 2018 Jan 2 [cited 2024 Jun 16];52(1):70–5. Available from: https://www.tandfonline.com/doi/full/10.1080/21681805.2017.1373698Lee HG, Seo Y, Kim JH, Han SB, Im JH, Jung CY, et al. Machine learning model for predicting ciprofloxacin resistance and presence of ESBL in patients with UTI in the ED. Sci Rep [Internet]. 2023 Feb 25 [cited 2023 May 13];13(1):3282. Available from: https://www.nature.com/articles/s41598-023-30290-yCohen JE, Chen L, Schaeffer AJ. Algorithms Using Previous Resistance, Prior Antimicrobial Prescriptions, and Patient Place of Residence Enhance Empirical Therapy for Women With Uncomplicated Urinary Tract Infections. Urology [Internet]. 2020 Mar [cited 2024 Aug 15];137:72–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0090429519310118Yang J, Eyre DW, Clifton DA. Interpretable Machine Learning-based Decision Support for Prediction of Antibiotic Resistance for Complicated Urinary Tract Infections. medRxiv [Internet]. 2023;((Yang J., jenny.yang@eng.ox.ac.uk; Clifton D.A.) Institute of Biomedical Engineering, Dept. Engineering Science, University of Oxford, United Kingdom). Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2022548019&from=exportTumbarello M, Raffaelli F, Peghin M, Losito AR, Chirico L, Giuliano G, et al. Characterisation and risk factor profiling of Pseudomonas aeruginosa urinary tract infections: pinpointing those likely to be caused by multidrug-resistant strains. Int J Antimicrob Agents. 2020;55(4):105900.Ruiz-Ramos J, Monje-López ÁE, Medina-Catalan D, Herrera-Mateo S, Hernández-Ontiveros H, Puig-Campany M, et al. PREDICTION OF MULTIDRUG-RESISTANT BACTERIA IN URINARY TRACT INFECTIONS IN THE EMERGENCY DEPARTMENT. J Emerg Med [Internet]. 2023 Apr 18; Available from: https://www.sciencedirect.com/science/article/pii/S0736467923002317Lodise TP, Chen LH, Wei R, Im TM, Contreras R, Bruxvoort KJ, et al. Clinical Risk Scores to Predict Nonsusceptibility to Trimethoprim-Sulfamethoxazole, Fluoroquinolone, Nitrofurantoin, and Third-Generation Cephalosporin Among Adult Outpatient Episodes of Complicated Urinary Tract Infection. Open Forum Infect Dis [Internet]. 2023 Aug 1 [cited 2024 Aug 13];10(8):ofad319. Available from: https://academic.oup.com/ofid/article/doi/10.1093/ofid/ofad319/7198038Li NY, Poh GQ, Teng GCW, Chen HH, Chan DSG, Chan SP, et al. A prediction tool for the presence of ceftriaxone-resistant uropathogens upon hospital admission. Antibiotics [Internet]. 2020;9(6):1–9. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2004549065&from=exportİlhanlı N, Park SY, Kim J, Ryu JA, Yardımcı A, Yoon D. Prediction of Antibiotic Resistance in Patients With a Urinary Tract Infection: Algorithm Development and Validation. JMIR Med Inform [Internet]. 2024 Feb 29 [cited 2024 Jun 16];12:e51326. Available from: https://medinform.jmir.org/2024/1/e51326Oberst M, Boominathan S, Zhou H, Kanjilal S, Sontag D. AMR-UTI: Antimicrobial resistance in urinary tract infections (version 1.0.0). [Internet]. PhysioNet.; 2020 [cited 2024 Aug 18]. Available from: https://physionet.org/content/antimicrobial-resistance-uti/1.0.0/Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet. Circulation [Internet]. 2000 Jun 13 [cited 2024 Aug 19];101(23):e215–20. Available from: https://doi.org/10.1161/01.CIR.101.23.e215Gomila A, Carratalà J, Eliakim-Raz N, Shaw E, Wiegand I, Vallejo-Torres L, et al. Risk factors and prognosis of complicated urinary tract infections caused by pseudomonas aeruginosa in hospitalized patients: A retrospective multicenter cohort study. Infect Drug Resist [Internet]. 2018;11:2571–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064759664&doi=10.2147%2fIDR.S185753&partnerID=40&md5=655243cd3f5cbcfe95b3d69384eda4ceTharmakulasingam M, Gardner B, Ragione RL, Fernando A. Explainable Deep Learning Approach for Multilabel Classification of Antimicrobial Resistance With Missing Labels. IEEE Access [Internet]. 2022 [cited 2024 Nov 5];10:113073–85. Available from: https://ieeexplore.ieee.org/document/9928273/Faine B, Harland K, Porter B, Liang S, Mohr N. A clinical decision rule identifies risk factors associated with antimicrobial-resistant urinary pathogens in the emergency department: a retrospective validation study. Ann Pharmacother [Internet]. 2015 Jun;49(6):649–55. Available from: https://pubmed.ncbi.nlm.nih.gov/25795004/González Del Castillo J, Julián-Jiménez A, Gamazo-Del Rio JJ, García-Lamberechts EJ, Llopis-Roca F, Guardiola Tey JM, et al. A multidrug-resistant microorganism infection risk prediction model: development and validation in an emergency medicine population. Eur J Clin Microbiol Infect Dis [Internet]. 2020 Feb [cited 2024 Sep 23];39(2):309–23. Available from: http://link.springer.com/10.1007/s10096-019-03727-4Amin D, Garzόn-Orjuela N, Garcia Pereira A, Parveen S, Vornhagen H, Vellinga A. Artificial Intelligence to Improve Antibiotic Prescribing: A Systematic Review. Antibiotics [Internet]. 2023 Aug 6 [cited 2024 Oct 7];12(8):1293. Available from: https://www.mdpi.com/2079-6382/12/8/1293Liu X, Liu X, Jin C, Luo Y, Yang L, Ning X, et al. Prediction models for diagnosis and prognosis of the colonization or infection of multidrug-resistant organisms in adults: a systematic review, critical appraisal, and meta-analysis. Clin Microbiol Infect [Internet]. 2024 Jul 9; Available from: https://www.sciencedirect.com/science/article/pii/S1198743X24003161Rauseo AM, Aljorayid A, Olsen MA, Larson L, Lipsey KL, Powderly WG, et al. Clinical predictive models of invasive Candida infection: A systematic literature review. Med Mycol [Internet]. 2021 Nov 3 [cited 2024 Oct 14];59(11):1053–67. Available from: https://academic.oup.com/mmy/article/59/11/1053/6327553Damen JAAG, Hooft L, Schuit E, Debray TPA, Collins GS, Tzoulaki I, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ [Internet]. 2016 May 16 [cited 2024 Oct 14];i2416. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.i2416Van Calster B, Steyerberg EW, Wynants L, Van Smeden M. There is no such thing as a validated prediction model. BMC Med [Internet]. 2023 Feb 24 [cited 2024 Oct 14];21(1):70. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-023-02779-wNaghavi M, Vollset SE, Ikuta KS, Swetschinski LR, Gray AP, Wool EE, et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet [Internet]. 2024 Sep [cited 2024 Nov 14];404(10459):1199–226. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673624018671European Centre for Disease Prevention and Control., World Health Organization. Antimicrobial resistance surveillance in Europe 2022: 2020 data. [Internet]. LU: Publications Office; 2022 [cited 2024 Nov 16]. Available from: https://data.europa.eu/doi/10.2900/112339Wawrysiuk S, Naber K, Rechberger T, Miotla P. Prevention and treatment of uncomplicated lower urinary tract infections in the era of increasing antimicrobial resistance—non-antibiotic approaches: a systemic review. Arch Gynecol Obstet [Internet]. 2019 Oct [cited 2024 Nov 17];300(4):821–8. Available from: http://link.springer.com/10.1007/s00404-019-05256-zPoku E, Cooper K, Cantrell A, Harnan S, Sin MA, Zanuzdana A, et al. Systematic review of time lag between antibiotic use and rise of resistant pathogens among hospitalized adults in Europe. JAC-Antimicrob Resist [Internet]. 2022 Dec 29 [cited 2024 Nov 18];5(1):dlad001. Available from: https://academic.oup.com/jacamr/article/doi/10.1093/jacamr/dlad001/6994059Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ [Internet]. 2010 Jun 2 [cited 2024 Nov 18];340(may18 2):c2096–c2096. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.c2096Parikh RB, Teeple S, Navathe AS. Addressing Bias in Artificial Intelligence in Health Care. JAMA [Internet]. 2019 Dec 24 [cited 2024 Nov 20];322(24):2377. Available from: https://jamanetwork.com/journals/jama/fullarticle/2756196Goldstein BA, Navar AM, Pencina MJ, Ioannidis JPA. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc [Internet]. 2017 Jan 1 [cited 2024 Nov 20];24(1):198–208. Available from: https://academic.oup.com/jamia/article/24/1/198/2631444Pinto-de-Sá R, Sousa-Pinto B, Costa-de-Oliveira S. Brave New World of Artificial Intelligence: Its Use in Antimicrobial Stewardship—A Systematic Review. Antibiotics [Internet]. 2024 Mar 28 [cited 2024 Nov 21];13(4):307. Available from: https://www.mdpi.com/2079-6382/13/4/307Mohd Sazlly Lim S, Wong PL, Sulaiman H, Atiya N, Hisham Shunmugam R, Liew SM. Clinical prediction models for ESBL-Enterobacteriaceae colonization or infection: a systematic review. J Hosp Infect [Internet]. 2019 May [cited 2024 Nov 21];102(1):8–16. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0195670119300143Austin PC, White IR, Lee DS, Van Buuren S. Missing Data in Clinical Research: A Tutorial on Multiple Imputation. Can J Cardiol [Internet]. 2021 Sep [cited 2024 Nov 21];37(9):1322–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0828282X20311119Peetluk LS, Ridolfi FM, Rebeiro PF, Liu D, Rolla VC, Sterling TR. Systematic review of prediction models for pulmonary tuberculosis treatment outcomes in adults. BMJ Open [Internet]. 2021 Mar [cited 2024 Nov 22];11(3):e044687. Available from: https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2020-044687Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ [Internet]. 2024 Apr 16 [cited 2025 Apr 15];e078378. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj-2023-078378Van Calster B, McLernon DJ, Van Smeden M, Wynants L, Steyerberg EW. Calibration: the Achilles heel of predictive analytics. BMC Med [Internet]. 2019 Dec [cited 2025 Apr 16];17(1):230. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1466-7la Roi-Teeuw HM, van Royen FS, de Hond A, Zahra A, de Vries S, Bartels R, et al. Don’t be misled: 3 misconceptions about external validation of clinical prediction models. J Clin Epidemiol [Internet]. 2024 Aug 1 [cited 2025 Apr 7];172. Available from: https://doi.org/10.1016/j.jclinepi.2024.111387Collins GS, Moons KGM, Debray TPA, Altman DR, Riley RD. Systematic Reviews of Prediction Models. In: Systematic Reviews in Health Research [Internet]. M. Egger, J.P.T. Higgins and G. Davey Smith. 2022. Available from: https://doi-org.udea.lookproxy.com/10.1002/9781119099369.ch18Farmacorresistencia microbianaDrug resistance, microbialInfecciones urinariasUrinary tract infectionsInfecciones comunitarias adquiridasCommunity-acquired infectionsMétodos de predicción automáticosPrediction methods, machineProgramas de optimización del uso de los antimicrobianosAntimicrobial stewardshipRevisión sistemáticaSystematic reviewTerapia antibiótica empíricahttps://id.nlm.nih.gov/mesh/D004352https://id.nlm.nih.gov/mesh/D014552https://id.nlm.nih.gov/mesh/D017714https://id.nlm.nih.gov/mesh/D000098411https://id.nlm.nih.gov/mesh/D000073602https://id.nlm.nih.gov/mesh/D000078182ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesPublicationORIGINALMoralesJuan_2025_RevisionModelosRAM.pdfMoralesJuan_2025_RevisionModelosRAM.pdfTesis de maestríaapplication/pdf2571783https://bibliotecadigital.udea.edu.co/bitstreams/2b9316e4-4673-4ea1-96b6-a47ffb9e629f/download23a6b4ceecd4ac331ccd67fd5c822009MD52trueAnonymousREADMoralesJuan_2025_Anexos.zipMoralesJuan_2025_Anexos.zipapplication/zip1210254https://bibliotecadigital.udea.edu.co/bitstreams/98151d6f-75b8-4691-b41d-4db58a874afa/download70eed992eec13600a74737779cd850e4MD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/3468c698-492a-4cf7-925d-fdef93beaf6b/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD55falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/5122bb30-269a-438f-9b1b-5905ecc2e6cb/download5643bfd9bcf29d560eeec56d584edaa9MD56falseAnonymousREADTEXTMoralesJuan_2025_RevisionModelosRAM.pdf.txtMoralesJuan_2025_RevisionModelosRAM.pdf.txtExtracted texttext/plain101683https://bibliotecadigital.udea.edu.co/bitstreams/3bc4e273-b451-4f24-82d8-8d9bfd85d38f/downloada89901be6122b9849d732917fe011a24MD57falseAnonymousREADTHUMBNAILMoralesJuan_2025_RevisionModelosRAM.pdf.jpgMoralesJuan_2025_RevisionModelosRAM.pdf.jpgGenerated Thumbnailimage/jpeg10535https://bibliotecadigital.udea.edu.co/bitstreams/771425e2-419d-4595-a4ee-123e7248f53c/download689f6b02a1bbdd440c0a8b2b7e6d92a3MD58falseAnonymousREAD10495/46125oai:bibliotecadigital.udea.edu.co:10495/461252025-05-28 04:02:12.265http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
