Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant
ABSTRACT: Chlorpyrifos (CPF) is a commonly used insecticide found in many water sources and is related to several health and environmental effects. Biosensors based on aptamers (single-stranded nucleic acid oligonucleotides) are promising alternatives to achieve the detection of CPF and other pestic...
- Autores:
-
Gaviria Arroyave, María Isabel
Arango Velásquez, Juan Pablo
Barrientos Urdinola, Kaory
Cano Quintero, Juan Bernardo
Peñuela Mesa, Gustavo Antonio
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/36629
- Acceso en línea:
- https://hdl.handle.net/10495/36629
- Palabra clave:
- Cloropirifos
Chlorpyrifos
Aptamers
Fluorescent biosensor
Carbon dots
Graphene oxide
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_76291d076a87c84513cd51cf1bc8d398 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/36629 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant |
| title |
Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant |
| spellingShingle |
Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant Cloropirifos Chlorpyrifos Aptamers Fluorescent biosensor Carbon dots Graphene oxide |
| title_short |
Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant |
| title_full |
Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant |
| title_fullStr |
Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant |
| title_full_unstemmed |
Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant |
| title_sort |
Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant |
| dc.creator.fl_str_mv |
Gaviria Arroyave, María Isabel Arango Velásquez, Juan Pablo Barrientos Urdinola, Kaory Cano Quintero, Juan Bernardo Peñuela Mesa, Gustavo Antonio |
| dc.contributor.author.none.fl_str_mv |
Gaviria Arroyave, María Isabel Arango Velásquez, Juan Pablo Barrientos Urdinola, Kaory Cano Quintero, Juan Bernardo Peñuela Mesa, Gustavo Antonio |
| dc.contributor.researchgroup.spa.fl_str_mv |
Diagnóstico y Control de la Contaminación Grupo de Manejo Eficiente de la Energía (GIMEL) |
| dc.subject.decs.none.fl_str_mv |
Cloropirifos Chlorpyrifos |
| topic |
Cloropirifos Chlorpyrifos Aptamers Fluorescent biosensor Carbon dots Graphene oxide |
| dc.subject.proposal.spa.fl_str_mv |
Aptamers Fluorescent biosensor Carbon dots Graphene oxide |
| description |
ABSTRACT: Chlorpyrifos (CPF) is a commonly used insecticide found in many water sources and is related to several health and environmental effects. Biosensors based on aptamers (single-stranded nucleic acid oligonucleotides) are promising alternatives to achieve the detection of CPF and other pesticides in natural waters. However, several challenges need to be addressed to promote the real application of functional aptasensing devices. In this work, an ssDNA aptamer (S1) is combined with carbon quantum dots (CD) and graphene oxide (GO) to produce a stable fluorescent aptasensor characterized through spectrophotometric and electrophoretic techniques. For a deeper understanding of the system, the mechanism of molecular interaction was studied through docking modeling using free bioinformatic tools like HDOCK, showing that the stem-loops and the higher guanine (G) content are crucial for better interaction. The model also suggests the possibility of generating a truncated aptamer to improve the binding affinity. The biosensor was evaluated for CPF detection, showing a low LOD of 0.01 μg L− 1 and good specificity in tap water, even compared to other organophosphates pesticides (OPs) like profenofos. Finally, the recovery of the proposed aptasensor was evaluated in some natural water using spiked samples and compared with UPLC MS-MS chromatography as the gold standard, showing a good recovery above 2.85 nM and evidencing the need of protecting ssDNA aptamers from an erratic interaction with the aromatic groups of dissolved organic matter (humic substances). This work paves the way for a better aptasensors design and the onsite implementation of novel devices for environmental monitoring. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-09-14T00:46:51Z |
| dc.date.available.none.fl_str_mv |
2023-09-14T00:46:51Z |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0003-2670 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/36629 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.aca.2023.341711 |
| dc.identifier.eissn.none.fl_str_mv |
1873-4324 |
| identifier_str_mv |
0003-2670 10.1016/j.aca.2023.341711 1873-4324 |
| url |
https://hdl.handle.net/10495/36629 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Anal. Chim. Acta. |
| dc.relation.citationendpage.spa.fl_str_mv |
10 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
1278 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Analytica Chimica Acta |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
10 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Ámsterdam, Países Bajos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/9d0bdd24-035b-4782-a3fa-48671e7fb2b9/download https://bibliotecadigital.udea.edu.co/bitstreams/d110be8a-de30-4310-bfb2-fd711ada47d8/download https://bibliotecadigital.udea.edu.co/bitstreams/1797960a-6700-4190-90ff-799953b738fa/download https://bibliotecadigital.udea.edu.co/bitstreams/697fdbad-714c-4f3d-8fa0-47368f16db2a/download https://bibliotecadigital.udea.edu.co/bitstreams/2da6932d-9dd5-4148-93d2-2adbe9fcd2f2/download |
| bitstream.checksum.fl_str_mv |
66c6c04010f233872ce996636fbada52 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 62cd6a681740dd63784220e5edefcdd4 9b2d290a337dace7b5f362e58971c132 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052173062832128 |
| spelling |
Gaviria Arroyave, María IsabelArango Velásquez, Juan PabloBarrientos Urdinola, KaoryCano Quintero, Juan BernardoPeñuela Mesa, Gustavo AntonioDiagnóstico y Control de la ContaminaciónGrupo de Manejo Eficiente de la Energía (GIMEL)2023-09-14T00:46:51Z2023-09-14T00:46:51Z20230003-2670https://hdl.handle.net/10495/3662910.1016/j.aca.2023.3417111873-4324ABSTRACT: Chlorpyrifos (CPF) is a commonly used insecticide found in many water sources and is related to several health and environmental effects. Biosensors based on aptamers (single-stranded nucleic acid oligonucleotides) are promising alternatives to achieve the detection of CPF and other pesticides in natural waters. However, several challenges need to be addressed to promote the real application of functional aptasensing devices. In this work, an ssDNA aptamer (S1) is combined with carbon quantum dots (CD) and graphene oxide (GO) to produce a stable fluorescent aptasensor characterized through spectrophotometric and electrophoretic techniques. For a deeper understanding of the system, the mechanism of molecular interaction was studied through docking modeling using free bioinformatic tools like HDOCK, showing that the stem-loops and the higher guanine (G) content are crucial for better interaction. The model also suggests the possibility of generating a truncated aptamer to improve the binding affinity. The biosensor was evaluated for CPF detection, showing a low LOD of 0.01 μg L− 1 and good specificity in tap water, even compared to other organophosphates pesticides (OPs) like profenofos. Finally, the recovery of the proposed aptasensor was evaluated in some natural water using spiked samples and compared with UPLC MS-MS chromatography as the gold standard, showing a good recovery above 2.85 nM and evidencing the need of protecting ssDNA aptamers from an erratic interaction with the aromatic groups of dissolved organic matter (humic substances). This work paves the way for a better aptasensors design and the onsite implementation of novel devices for environmental monitoring.Colombia. Ministerio de Ciencia, Tecnología e InnovaciónCOL0010477COL004040210application/pdfengElsevierÁmsterdam, Países Bajoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutantArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCloropirifosChlorpyrifosAptamersFluorescent biosensorCarbon dotsGraphene oxideAnal. Chim. Acta.1011278Analytica Chimica Acta111571451059, FP44842-147-2016RoR:048jthh02PublicationORIGINALGaviriaMaria_2023_FluorescentNanostructuredCarbon.pdfGaviriaMaria_2023_FluorescentNanostructuredCarbon.pdfArtículo de investigaciónapplication/pdf5166027https://bibliotecadigital.udea.edu.co/bitstreams/9d0bdd24-035b-4782-a3fa-48671e7fb2b9/download66c6c04010f233872ce996636fbada52MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/d110be8a-de30-4310-bfb2-fd711ada47d8/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/1797960a-6700-4190-90ff-799953b738fa/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTGaviriaMaria_2023_FluorescentNanostructuredCarbon.pdf.txtGaviriaMaria_2023_FluorescentNanostructuredCarbon.pdf.txtExtracted texttext/plain62779https://bibliotecadigital.udea.edu.co/bitstreams/697fdbad-714c-4f3d-8fa0-47368f16db2a/download62cd6a681740dd63784220e5edefcdd4MD56falseAnonymousREADTHUMBNAILGaviriaMaria_2023_FluorescentNanostructuredCarbon.pdf.jpgGaviriaMaria_2023_FluorescentNanostructuredCarbon.pdf.jpgGenerated Thumbnailimage/jpeg12400https://bibliotecadigital.udea.edu.co/bitstreams/2da6932d-9dd5-4148-93d2-2adbe9fcd2f2/download9b2d290a337dace7b5f362e58971c132MD57falseAnonymousREAD10495/36629oai:bibliotecadigital.udea.edu.co:10495/366292025-03-26 18:05:00.528http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
