FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy
ABSTRACT: This paper reports on a convolutional neural network (CNN) – based regression model, called FocusNET, to predict the accurate reconstruction distance of raw holograms in Digital Lensless Holographic Microscopy (DLHM). This proposal provides a physical-mathematical formulation to extend its...
- Autores:
-
Pabón Vidal, Adriana Lucía
García Sucerquia, Jorge Iván
Gómez Ramírez, Alejandra
Herrera Ramírez, Jorge Alexis
Buitrago Duque, Carlos Andrés
Lopera Acosta, María Josef
Montoya, Manuel
Trujillo Anaya, Carlos Alejandro
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/42049
- Acceso en línea:
- https://hdl.handle.net/10495/42049
- Palabra clave:
- Aprendizaje Profundo
Deep Learning
Microscopía
Microscopy
https://id.nlm.nih.gov/mesh/D000077321
https://id.nlm.nih.gov/mesh/D008853
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_74280ec1baa4fae8f2587f6a89a195d6 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/42049 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy |
| title |
FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy |
| spellingShingle |
FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy Aprendizaje Profundo Deep Learning Microscopía Microscopy https://id.nlm.nih.gov/mesh/D000077321 https://id.nlm.nih.gov/mesh/D008853 |
| title_short |
FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy |
| title_full |
FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy |
| title_fullStr |
FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy |
| title_full_unstemmed |
FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy |
| title_sort |
FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy |
| dc.creator.fl_str_mv |
Pabón Vidal, Adriana Lucía García Sucerquia, Jorge Iván Gómez Ramírez, Alejandra Herrera Ramírez, Jorge Alexis Buitrago Duque, Carlos Andrés Lopera Acosta, María Josef Montoya, Manuel Trujillo Anaya, Carlos Alejandro |
| dc.contributor.author.none.fl_str_mv |
Pabón Vidal, Adriana Lucía García Sucerquia, Jorge Iván Gómez Ramírez, Alejandra Herrera Ramírez, Jorge Alexis Buitrago Duque, Carlos Andrés Lopera Acosta, María Josef Montoya, Manuel Trujillo Anaya, Carlos Alejandro |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo Malaria |
| dc.subject.decs.none.fl_str_mv |
Aprendizaje Profundo Deep Learning Microscopía Microscopy |
| topic |
Aprendizaje Profundo Deep Learning Microscopía Microscopy https://id.nlm.nih.gov/mesh/D000077321 https://id.nlm.nih.gov/mesh/D008853 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D000077321 https://id.nlm.nih.gov/mesh/D008853 |
| description |
ABSTRACT: This paper reports on a convolutional neural network (CNN) – based regression model, called FocusNET, to predict the accurate reconstruction distance of raw holograms in Digital Lensless Holographic Microscopy (DLHM). This proposal provides a physical-mathematical formulation to extend its use to different DLHM setups than the optical and geometrical conditions utilized for recording the training dataset; this unique feature is tested by applying the proposal to holograms of diverse samples recorded with different DLHM setups. Additionally, a comparison between FocusNET and conventional autofocusing methods in terms of processing times and accuracy is provided. Although the proposed method predicts reconstruction distances with approximately 54 µm standard deviation, accurate information about the samples in the validation dataset is still retrieved. When compared to a method that utilizes a stack of reconstructions to find the best focal plane, FocusNET performs 600 times faster, as no hologram reconstruction is needed. When implemented in batches, the network can achieve up to a 1200-fold reduction in processing time, depending on the number of holograms to be processed. The training and validation datasets, and the code implementations, are hosted on a public GitHub repository that can be freely accessed. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-09-12T00:02:33Z |
| dc.date.available.none.fl_str_mv |
2024-09-12T00:02:33Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0143-8166 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/42049 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.optlaseng.2023.107546 |
| dc.identifier.eissn.none.fl_str_mv |
1873-0302 |
| identifier_str_mv |
0143-8166 10.1016/j.optlaseng.2023.107546 1873-0302 |
| url |
https://hdl.handle.net/10495/42049 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Opt. Lasers Eng. |
| dc.relation.citationendpage.spa.fl_str_mv |
10 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
165 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Optics and Lasers in Engineering |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
10 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Londres, Inglaterra |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/b0aa88f4-57fd-4bf6-a460-a2eb36f87367/download https://bibliotecadigital.udea.edu.co/bitstreams/06be6d99-0000-4553-b2c0-a1673f5fa203/download https://bibliotecadigital.udea.edu.co/bitstreams/6602758f-dbcb-4b48-8bc8-9196f526b682/download https://bibliotecadigital.udea.edu.co/bitstreams/b88e9417-aa39-4fdb-9909-16efbaae19ce/download https://bibliotecadigital.udea.edu.co/bitstreams/0859a173-1b5d-4ce1-8d3d-128b8eb13d5f/download |
| bitstream.checksum.fl_str_mv |
114fb18d068555167d901a60ecd4804c b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 bf9597714f078d7a9ca09cf666aaf737 8a843947867585fd6703ba839a649146 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052646082805760 |
| spelling |
Pabón Vidal, Adriana LucíaGarcía Sucerquia, Jorge IvánGómez Ramírez, AlejandraHerrera Ramírez, Jorge AlexisBuitrago Duque, Carlos AndrésLopera Acosta, María JosefMontoya, ManuelTrujillo Anaya, Carlos AlejandroGrupo Malaria2024-09-12T00:02:33Z2024-09-12T00:02:33Z20230143-8166https://hdl.handle.net/10495/4204910.1016/j.optlaseng.2023.1075461873-0302ABSTRACT: This paper reports on a convolutional neural network (CNN) – based regression model, called FocusNET, to predict the accurate reconstruction distance of raw holograms in Digital Lensless Holographic Microscopy (DLHM). This proposal provides a physical-mathematical formulation to extend its use to different DLHM setups than the optical and geometrical conditions utilized for recording the training dataset; this unique feature is tested by applying the proposal to holograms of diverse samples recorded with different DLHM setups. Additionally, a comparison between FocusNET and conventional autofocusing methods in terms of processing times and accuracy is provided. Although the proposed method predicts reconstruction distances with approximately 54 µm standard deviation, accurate information about the samples in the validation dataset is still retrieved. When compared to a method that utilizes a stack of reconstructions to find the best focal plane, FocusNET performs 600 times faster, as no hologram reconstruction is needed. When implemented in batches, the network can achieve up to a 1200-fold reduction in processing time, depending on the number of holograms to be processed. The training and validation datasets, and the code implementations, are hosted on a public GitHub repository that can be freely accessed.COL000752410 páginasapplication/pdfengElsevierLondres, Inglaterrahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopyArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAprendizaje ProfundoDeep LearningMicroscopíaMicroscopyhttps://id.nlm.nih.gov/mesh/D000077321https://id.nlm.nih.gov/mesh/D008853Opt. Lasers Eng.101165Optics and Lasers in EngineeringPublicationORIGINALPabonAdriana_2023_FocusNET_Lensless_Microscopy.pdfPabonAdriana_2023_FocusNET_Lensless_Microscopy.pdfArtículo de investigaciónapplication/pdf2937529https://bibliotecadigital.udea.edu.co/bitstreams/b0aa88f4-57fd-4bf6-a460-a2eb36f87367/download114fb18d068555167d901a60ecd4804cMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/06be6d99-0000-4553-b2c0-a1673f5fa203/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/6602758f-dbcb-4b48-8bc8-9196f526b682/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTPabonAdriana_2023_FocusNET_Lensless_Microscopy.pdf.txtPabonAdriana_2023_FocusNET_Lensless_Microscopy.pdf.txtExtracted texttext/plain58765https://bibliotecadigital.udea.edu.co/bitstreams/b88e9417-aa39-4fdb-9909-16efbaae19ce/downloadbf9597714f078d7a9ca09cf666aaf737MD54falseAnonymousREADTHUMBNAILPabonAdriana_2023_FocusNET_Lensless_Microscopy.pdf.jpgPabonAdriana_2023_FocusNET_Lensless_Microscopy.pdf.jpgGenerated Thumbnailimage/jpeg15510https://bibliotecadigital.udea.edu.co/bitstreams/0859a173-1b5d-4ce1-8d3d-128b8eb13d5f/download8a843947867585fd6703ba839a649146MD55falseAnonymousREAD10495/42049oai:bibliotecadigital.udea.edu.co:10495/420492025-03-27 01:35:37.95http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
