Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada

A nivel mundial, en las aguas residuales se ha detectado la presencia de compuestos orgánicos que permanecen en el ambiente, debido a que, los métodos convencionales de las Plantas de Tratamiento de Aguas Residuales (PTAR) son ineficientes para degradarlos; incluso, en diferentes regiones de Colombi...

Full description

Autores:
Martínez Mena, Yudy Liceth
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/47286
Acceso en línea:
https://hdl.handle.net/10495/47286
Palabra clave:
Liberación de Fármacos
Drug Liberation
Orina
Urine
Fotoquímica
Photochemistry
Ultrasonido
Ultrasonics
Electroquímica
Electrochemistry
Procesos de oxidación avanzada
Fármacos
Carbocatalizador
https://id.nlm.nih.gov/mesh/D065546
https://id.nlm.nih.gov/mesh/D014556
https://id.nlm.nih.gov/mesh/D010777
https://id.nlm.nih.gov/mesh/D014465
https://id.nlm.nih.gov/mesh/D004563
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_73c7de12d4f9697e175390479dd4a083
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/47286
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada
title Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada
spellingShingle Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada
Liberación de Fármacos
Drug Liberation
Orina
Urine
Fotoquímica
Photochemistry
Ultrasonido
Ultrasonics
Electroquímica
Electrochemistry
Procesos de oxidación avanzada
Fármacos
Carbocatalizador
https://id.nlm.nih.gov/mesh/D065546
https://id.nlm.nih.gov/mesh/D014556
https://id.nlm.nih.gov/mesh/D010777
https://id.nlm.nih.gov/mesh/D014465
https://id.nlm.nih.gov/mesh/D004563
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
title_short Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada
title_full Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada
title_fullStr Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada
title_full_unstemmed Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada
title_sort Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada
dc.creator.fl_str_mv Martínez Mena, Yudy Liceth
dc.contributor.advisor.none.fl_str_mv Serna Galvis, Efraím Adolfo
Silva Agredo, Javier
dc.contributor.author.none.fl_str_mv Martínez Mena, Yudy Liceth
dc.contributor.researchgroup.none.fl_str_mv Grupo de Investigación en Remediación Ambiental y Biocatálisis
dc.contributor.jury.none.fl_str_mv Ramírez Sánchez, Carolina
Granda Ramírez, Carlos Fidel
dc.subject.decs.none.fl_str_mv Liberación de Fármacos
Drug Liberation
Orina
Urine
Fotoquímica
Photochemistry
Ultrasonido
Ultrasonics
Electroquímica
Electrochemistry
topic Liberación de Fármacos
Drug Liberation
Orina
Urine
Fotoquímica
Photochemistry
Ultrasonido
Ultrasonics
Electroquímica
Electrochemistry
Procesos de oxidación avanzada
Fármacos
Carbocatalizador
https://id.nlm.nih.gov/mesh/D065546
https://id.nlm.nih.gov/mesh/D014556
https://id.nlm.nih.gov/mesh/D010777
https://id.nlm.nih.gov/mesh/D014465
https://id.nlm.nih.gov/mesh/D004563
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
dc.subject.proposal.spa.fl_str_mv Procesos de oxidación avanzada
Fármacos
Carbocatalizador
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D065546
https://id.nlm.nih.gov/mesh/D014556
https://id.nlm.nih.gov/mesh/D010777
https://id.nlm.nih.gov/mesh/D014465
https://id.nlm.nih.gov/mesh/D004563
dc.subject.ods.none.fl_str_mv ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
description A nivel mundial, en las aguas residuales se ha detectado la presencia de compuestos orgánicos que permanecen en el ambiente, debido a que, los métodos convencionales de las Plantas de Tratamiento de Aguas Residuales (PTAR) son ineficientes para degradarlos; incluso, en diferentes regiones de Colombia, el agua residual no recibe ningún tratamiento y es descargada directamente en los cuerpos de agua naturales. Algunos de dichos compuestos se denominan contaminantes de preocupación emergente (CPE) y, entre estos, se encuentran algunos fármacos que tienen el potencial de generar efectos tóxicos en el ambiente y la salud humana, además de su tendencia a bioacumularse en las especies acuáticas, las cuales pueden hacer parte de la alimentación humana y favorecer la recirculación de contaminantes. En este trabajo, se abordó el estudio de la eficiencia de Procesos de Oxidación Avanzada (POA) fotoquímico, electroquímico, sonoquímico y carbocatalítico para la eliminación de los fármacos acetaminofén, levofloxacina y losartán en matrices acuosas como la orina, fuente de ingreso de los compuestos al medio ambiente, considerando la evaluación de efecto de parámetros, rutas de degradación y el alcance del tratamiento, con el fin de establecer el proceso más adecuado (desde tres ejes: técnico, ambiental y económico) y adaptable al contexto colombiano. A partir del presente trabajo de investigación, se encontró que la carbocatálisis en un proceso oxidativo con gran potencial para la eliminación de fármacos en orina en el país.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-09-03T16:41:54Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/47286
url https://hdl.handle.net/10495/47286
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Amiri, Z., Moussavi, G., Mohammadi, S., & Giannakis, S. (2021). Development of a VUV-UVC/peroxymonosulfate, continuous-flow Advanced Oxidation Process for surface water disinfection and Natural Organic Matter elimination: Application and mechanistic aspects. Journal of Hazardous Materials, 408, 124634. https://doi.org/10.1016/j.jhazmat.2020.124634
Ataee, S., & Stephan, A. (2025). Life cycle assessment and material flow analysis of road and rail infrastructure assets – A critical review. Cleaner Environmental Systems, 100259. https://doi.org/10.1016/j.cesys.2025.100259
Cho, K., & Hoffmann, M. R. (2014). Urea Degradation by Electrochemically Generated Reactive Chlorine Species: Products and Reaction Pathways. Environmental Science & Technology, 48(19), 11504-11511. https://doi.org/10.1021/es5025405
Environmental management - Life cycle assessment - Principles and framework, First edit International Organization for Standardization 1 (1997).
Espinoza-Montero, P.J., Alulema-Pullupaxi, P., Frontana-Uribe, B. A., Barrera-Diaz, C. E. (2022). Electrochemical production of hydrogen peroxide on Boron-Doped diamond (BDD) electrode. Solid State and Materials Science. 26(3):100988 https://doi.org/10.1016/j.cossms.2022.100988
Estrada-Flórez, S. E., Serna-Galvis, E. A., Lee, J., & Torres-Palma, R. A. (2024). Unraveling kinetic and synergistic effects during ultrasound-enhanced carbocatalysis for water remediation as a function of ultrasonic frequency. Journal of Environmental Management, 350, 119548. https://doi.org/10.1016/j.jenvman.2023.119548
Giannuzzi, L., Ortega, F., & Ventosi, E. (2018). CAPÍTULO 1 Principios generales de la toxicología (Universidad Nacional de La Plata. Facultad de Ciencias Exactas).
Giménez, B. N., Schenone, A. V., & Conte, L. O. (2024). Exploring the role of hydrogen peroxide dosage strategies in the photo-Fenton process: Scaling from lab-scale to pilot plant solar reactor. Chemical Engineering Journal Advances, 19, 100627. https://doi.org/10.1016/j.ceja.2024.100627
Girón-Navarro, R., Martínez-Miranda, V., Teutli-Sequeira, E. A., Linares-Hernández, I., Martínez-Cienfuegos, I. G., Sánchez-Pozos, M., & Santoyo-Tepole, F. (2023). A solar photoFenton process with calcium peroxide from eggshell and ferrioxalate complexes for the degradation of the commercial herbicide 2,4-D in water. Journal of Photochemistry and Photobiology A: Chemistry, 438, 114550. https://doi.org/10.1016/j.jphotochem.2023.114550
Grisales, C. M., Salazar, L. M., & Garcia, D. P. (2019). Treatment of synthetic dye baths by Fenton processes: Evaluation of their environmental footprint through life cycle assessment. Environmental Science and Pollution Research, 26(5), 4300-4311. https://doi.org/10.1007/s11356-018-2757-9
Guateque-Londoño, J. F., Serna-Galvis, E. A., Ávila-Torres, Y., & Torres-Palma, R. A. (2020). Degradation of Losartan in Fresh Urine by Sonochemical and Photochemical Advanced Oxidation Processes. Water, 12(12), Article 12. https://doi.org/10.3390/w12123398
Guateque-Londoño, J. F., Serna-Galvis, E. A., Lee, J., Ávila-Torres, Y. P., & Torres-Palma, R. A. (2024). Intensifying the sonochemical degradation of hydrophilic organic contaminants by organic and inorganic additives. Journal of Environmental Management, 366, 121930. https://doi.org/10.1016/j.jenvman.2024.121930
Guateque-Londoño, J. F., Serna-Galvis, E. A., Silva-Agredo, J., Ávila-Torres, Y., & Torres-Palma, R. A. (2020). Dataset on the degradation of losartan by TiO2-photocatalysis and UVC/persulfate processes. Data in Brief, 31, 105692. https://doi.org/10.1016/j.dib.2020.105692
Guzmán-Duque, F. L., Palma-Goyes, R. E., González, I., Peñuela, G., & Torres-Palma, R. A. (2014). Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. Journal of Hazardous Materials, 278, 221-226. https://doi.org/10.1016/j.jhazmat.2014.05.076
Iqbal, J., Shah, N. S., Ali Khan, J., Naushad, Mu., Boczkaj, G., Jamil, F., Khan, S., Li, L., Murtaza, B., & Han, C. (2024). Pharmaceuticals wastewater treatment via different advanced oxidation processes: Reaction mechanism, operational factors, toxicities, and cost evaluation – A review. Separation and Purification Technology, 347, 127458. https://doi.org/10.1016/j.seppur.2024.127458
International Organization for Standardization, ISO. (2006). ISO 14040:2006 Environmental management—Life cycle assessment—Principles and framework. https://www.iso.org/standard/37456.html
Montoya-Rodríguez, D. M., Serna-Galvis, E. A., Ferraro, F., & Torres-Palma, R. A. (2020). Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes—Parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. Journal of Environmental Management, 261, 110224. https://doi.org/10.1016/j.jenvman.2020.110224
Parthenidis, P., Evgenidou, E., Lambropoulou, D. (2023). Landfill leachate treatment by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs). Journal of Water Process Engineering. 53, 103768. https://doi.org/10.1016/j.jwpe.2023.103768
Priyadarshini, M., Das, I., Ghangrekar, M. M., Blaney, L. (2022). Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management. 316, 115295. https://doi.org/10.1016/j.jenvman.2022.115295
Naveen Kumar, S., Jothi Ramalingam, R., Muthusamy, K., & Kavitha. (2023). Degradation of organic/inorganic pollutants through photofenton membrane bioreactor (PFMBR) and lumped kinetic modeling in pharmaceutical effluent. Chemical Engineering and Processing - Process Intensification, 185, 109305. https://doi.org/10.1016/j.cep.2023.109305
Pérez-Verde, A., García-Muñoz, P., López-Muñoz, M. J., & Rodríguez-Chueca, J. (2024). Study of ilmenite and zero valent iron nanoparticles for persulfate activation in disinfection of wastewater. Journal of Environmental Chemical Engineering, 12(6), 114449. https://doi.org/10.1016/j.jece.2024.114449
Quimbaya-Ñañez, C., Serna-Galvis, E. A., Silva-Agredo, J., Huerta, L., Torres-Palma, R. A., & Ávila-Torres, Y. (2024). Mn-based material derived from industrial sawdust for the elimination of ciprofloxacin: Loss of antibiotic activity and toxicity via carbocatalysis assisted by ultrasound. Journal of Environmental Chemical Engineering, 12(2), 112015. https://doi.org/10.1016/j.jece.2024.112015
Serna Galvis, E. A. (2019). Application of advanced oxidation processes for the elimination of antibiotics and resistant bacteria in water. Universidad de Antioquia.
Serna-Galvis, E. A., Cáceres-Peña, A. C., & Torres-Palma, R. A. (2020). Elimination of representative fluoroquinolones, penicillins, and cephalosporins by solar photo-Fenton: Degradation routes, primary transformations, degradation improvement by citric acid addition, and antimicrobial activity evolution. Environmental Science and Pollution Research, 27(33), 41381-41393. https://doi.org/10.1007/s11356-020-10069-8
Serna-Galvis, E. A., Guateque-Londoño, J. F., Silva-Agredo, J., Porras, J., Ávila-Torres, Y., & Torres-Palma, R. A. (2021). Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways. Ultrasonics Sonochemistry, 80, 105814. https://doi.org/10.1016/j.ultsonch.2021.105814
Serna-Galvis, E. A., Montoya-Rodríguez, D., Isaza-Pineda, L., Ibáñez, M., Hernández, F., Moncayo-Lasso, A., & Torres-Palma, R. A. (2019). Sonochemical degradation of antibiotics from representative classes-Considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrasonics Sonochemistry, 50, 157-165. https://doi.org/10.1016/j.ultsonch.2018.09.012
Serna-Galvis, E. A., Porras, J., & Torres-Palma, R. A. (2022). A critical review on the sonochemical degradation of organic pollutants in urine, seawater, and mineral water. Ultrasonics Sonochemistry, 82, 105861. https://doi.org/10.1016/j.ultsonch.2021.105861
Serna-Galvis, E. A., Silva-Agredo, J., Giraldo, A. L., Flórez, O. A., & Torres-Palma, R. A. (2016). Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO 2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chemical Engineering Journal, 284, 953-962. https://doi.org/10.1016/j.cej.2015.08.154
Shah, N. S., Khan, J. A., Al-Muhtaseb, A. H., Sayed, M., Murtaza, B., & Khan, H. M. (2016). Synergistic effects of HSO 5 − in the gamma radiation driven process for the removal of chlorendic acid: A new alternative for water treatment. Chemical Engineering Journal, 306, 512-521. https://doi.org/10.1016/j.cej.2016.07.031
Sheneni, V. D., Momoh, T. B., Edegbo, E. (2018). Effect of male and female urine on growth and phytochemical constituents of Zea Mays. Open Access Journal of Science. 2(6). DOI: 10.15406/oajs.2018.02.00105
Venâncio, C., Caon, K., & Lopes, I. (2023). Cation Composition Influences the Toxicity of Salinity to Freshwater Biota. Int. J. Environ. Res. Public Health.
Wang, S., Lu, W., Esakkimuthu, S., Chen, H., Yang, J., Mu, M., & Gong, X. (2023a). Life cycle assessment of carbon-based adsorbent preparation from algal biomass. Journal of Cleaner Production, 427, 139269. https://doi.org/10.1016/j.jclepro.2023.139269
Xie, J., Zhang, C., & Waite, T. D. (2022). Hydroxyl radicals in anodic oxidation systems: Generation, identification and quantification. Water Research, 217, 118425. https://doi.org/10.1016/j.watres.2022.118425
Zhou, Y., Gao, Y., Jiang, J., Shen, Y.M., Pang, S.Y., Song, Y., Guo, Q. (2021). A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group. Journal of Hazardous Materials. 5, 123834. https://doi.org/10.1016/j.jhazmat.2020.123834
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 92 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.box.none.fl_str_mv Lat: 04 00 00 N degrees minutes Lat: 4.0000 decimal degrees Long: 072 00 00 W degrees minutes Long: -72.0000 decimal degrees
dc.coverage.tgn.none.fl_str_mv http://vocab.getty.edu/page/tgn/1000050
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Maestría en Ciencias Farmacéuticas y Alimentarias
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Farmacéuticas y Alimentarias
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/2c706b6e-6461-4841-93ee-ab7b7ff9f93d/download
https://bibliotecadigital.udea.edu.co/bitstreams/73bcafd7-424c-4fac-8796-6a4877df1996/download
https://bibliotecadigital.udea.edu.co/bitstreams/6672485c-f65a-49cb-9f1c-bbab80cb2a79/download
https://bibliotecadigital.udea.edu.co/bitstreams/e1d49ae8-c596-4a20-a710-5b26a78e2103/download
https://bibliotecadigital.udea.edu.co/bitstreams/35ba20db-be61-41a8-8320-8cff97dc40dc/download
bitstream.checksum.fl_str_mv b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
4cb170cb0dbed583d9a7d6f84446d245
8f8e4500e52e8df72ab059f0d6050cce
0b55a09b9cf7fe87f11ccf3135793a06
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052261266948096
spelling Serna Galvis, Efraím AdolfoSilva Agredo, JavierMartínez Mena, Yudy LicethGrupo de Investigación en Remediación Ambiental y BiocatálisisRamírez Sánchez, CarolinaGranda Ramírez, Carlos Fidel2025-09-03T16:41:54Z2025https://hdl.handle.net/10495/47286A nivel mundial, en las aguas residuales se ha detectado la presencia de compuestos orgánicos que permanecen en el ambiente, debido a que, los métodos convencionales de las Plantas de Tratamiento de Aguas Residuales (PTAR) son ineficientes para degradarlos; incluso, en diferentes regiones de Colombia, el agua residual no recibe ningún tratamiento y es descargada directamente en los cuerpos de agua naturales. Algunos de dichos compuestos se denominan contaminantes de preocupación emergente (CPE) y, entre estos, se encuentran algunos fármacos que tienen el potencial de generar efectos tóxicos en el ambiente y la salud humana, además de su tendencia a bioacumularse en las especies acuáticas, las cuales pueden hacer parte de la alimentación humana y favorecer la recirculación de contaminantes. En este trabajo, se abordó el estudio de la eficiencia de Procesos de Oxidación Avanzada (POA) fotoquímico, electroquímico, sonoquímico y carbocatalítico para la eliminación de los fármacos acetaminofén, levofloxacina y losartán en matrices acuosas como la orina, fuente de ingreso de los compuestos al medio ambiente, considerando la evaluación de efecto de parámetros, rutas de degradación y el alcance del tratamiento, con el fin de establecer el proceso más adecuado (desde tres ejes: técnico, ambiental y económico) y adaptable al contexto colombiano. A partir del presente trabajo de investigación, se encontró que la carbocatálisis en un proceso oxidativo con gran potencial para la eliminación de fármacos en orina en el país.The presence of organic compounds that remain in the environment has been detected in wastewater worldwide because the conventional methods at wastewater treatment plants (WWTPs) are inefficient to degrade them. In different regions of Colombia, wastewater does not receive any treatment and is discharged directly into natural water. Some of these compounds are called contaminants of emerging concern (CEC) e.g., pharmaceuticals, which have the potential to generate toxic effects on the environment and human health. Also, pharmaceuticals tend to bioaccumulate through aquatic species, which can be part of the human diet and favor the recirculation of pollutants. In this work, the efficiency of photochemical, electrochemical, sonochemicaland carbocatalytic Advanced Oxidation Processes (AOP) for the elimination of acetaminophen, levofloxacin and losartán in aqueous matrices such as urine was studied, considering the evaluation of the effect of parameters, degradation routes and the scope of treatment, in order to establish the most appropriate process (considering 3 aspects: technical, environmental, and economic) and adaptable to the Colombian context. From this research, it was found that carbocatalysis is an oxidative process with great potential for the elimination of drugs in urine in our country.CODI 2022-53586Medicamentos, cosméticos y afinesCOL0125116TESIS CON DISTINCIÓN: Cum Laude (Meritoria)MaestríaMagíster en Ciencias Farmacéuticas y Alimentarias92 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en Ciencias Farmacéuticas y AlimentariasMedellín, ColombiaFacultad de Ciencias Farmacéuticas y AlimentariasCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzadaTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftAmiri, Z., Moussavi, G., Mohammadi, S., & Giannakis, S. (2021). Development of a VUV-UVC/peroxymonosulfate, continuous-flow Advanced Oxidation Process for surface water disinfection and Natural Organic Matter elimination: Application and mechanistic aspects. Journal of Hazardous Materials, 408, 124634. https://doi.org/10.1016/j.jhazmat.2020.124634Ataee, S., & Stephan, A. (2025). Life cycle assessment and material flow analysis of road and rail infrastructure assets – A critical review. Cleaner Environmental Systems, 100259. https://doi.org/10.1016/j.cesys.2025.100259Cho, K., & Hoffmann, M. R. (2014). Urea Degradation by Electrochemically Generated Reactive Chlorine Species: Products and Reaction Pathways. Environmental Science & Technology, 48(19), 11504-11511. https://doi.org/10.1021/es5025405Environmental management - Life cycle assessment - Principles and framework, First edit International Organization for Standardization 1 (1997).Espinoza-Montero, P.J., Alulema-Pullupaxi, P., Frontana-Uribe, B. A., Barrera-Diaz, C. E. (2022). Electrochemical production of hydrogen peroxide on Boron-Doped diamond (BDD) electrode. Solid State and Materials Science. 26(3):100988 https://doi.org/10.1016/j.cossms.2022.100988Estrada-Flórez, S. E., Serna-Galvis, E. A., Lee, J., & Torres-Palma, R. A. (2024). Unraveling kinetic and synergistic effects during ultrasound-enhanced carbocatalysis for water remediation as a function of ultrasonic frequency. Journal of Environmental Management, 350, 119548. https://doi.org/10.1016/j.jenvman.2023.119548Giannuzzi, L., Ortega, F., & Ventosi, E. (2018). CAPÍTULO 1 Principios generales de la toxicología (Universidad Nacional de La Plata. Facultad de Ciencias Exactas).Giménez, B. N., Schenone, A. V., & Conte, L. O. (2024). Exploring the role of hydrogen peroxide dosage strategies in the photo-Fenton process: Scaling from lab-scale to pilot plant solar reactor. Chemical Engineering Journal Advances, 19, 100627. https://doi.org/10.1016/j.ceja.2024.100627Girón-Navarro, R., Martínez-Miranda, V., Teutli-Sequeira, E. A., Linares-Hernández, I., Martínez-Cienfuegos, I. G., Sánchez-Pozos, M., & Santoyo-Tepole, F. (2023). A solar photoFenton process with calcium peroxide from eggshell and ferrioxalate complexes for the degradation of the commercial herbicide 2,4-D in water. Journal of Photochemistry and Photobiology A: Chemistry, 438, 114550. https://doi.org/10.1016/j.jphotochem.2023.114550Grisales, C. M., Salazar, L. M., & Garcia, D. P. (2019). Treatment of synthetic dye baths by Fenton processes: Evaluation of their environmental footprint through life cycle assessment. Environmental Science and Pollution Research, 26(5), 4300-4311. https://doi.org/10.1007/s11356-018-2757-9Guateque-Londoño, J. F., Serna-Galvis, E. A., Ávila-Torres, Y., & Torres-Palma, R. A. (2020). Degradation of Losartan in Fresh Urine by Sonochemical and Photochemical Advanced Oxidation Processes. Water, 12(12), Article 12. https://doi.org/10.3390/w12123398Guateque-Londoño, J. F., Serna-Galvis, E. A., Lee, J., Ávila-Torres, Y. P., & Torres-Palma, R. A. (2024). Intensifying the sonochemical degradation of hydrophilic organic contaminants by organic and inorganic additives. Journal of Environmental Management, 366, 121930. https://doi.org/10.1016/j.jenvman.2024.121930Guateque-Londoño, J. F., Serna-Galvis, E. A., Silva-Agredo, J., Ávila-Torres, Y., & Torres-Palma, R. A. (2020). Dataset on the degradation of losartan by TiO2-photocatalysis and UVC/persulfate processes. Data in Brief, 31, 105692. https://doi.org/10.1016/j.dib.2020.105692Guzmán-Duque, F. L., Palma-Goyes, R. E., González, I., Peñuela, G., & Torres-Palma, R. A. (2014). Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. Journal of Hazardous Materials, 278, 221-226. https://doi.org/10.1016/j.jhazmat.2014.05.076Iqbal, J., Shah, N. S., Ali Khan, J., Naushad, Mu., Boczkaj, G., Jamil, F., Khan, S., Li, L., Murtaza, B., & Han, C. (2024). Pharmaceuticals wastewater treatment via different advanced oxidation processes: Reaction mechanism, operational factors, toxicities, and cost evaluation – A review. Separation and Purification Technology, 347, 127458. https://doi.org/10.1016/j.seppur.2024.127458International Organization for Standardization, ISO. (2006). ISO 14040:2006 Environmental management—Life cycle assessment—Principles and framework. https://www.iso.org/standard/37456.htmlMontoya-Rodríguez, D. M., Serna-Galvis, E. A., Ferraro, F., & Torres-Palma, R. A. (2020). Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes—Parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. Journal of Environmental Management, 261, 110224. https://doi.org/10.1016/j.jenvman.2020.110224Parthenidis, P., Evgenidou, E., Lambropoulou, D. (2023). Landfill leachate treatment by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs). Journal of Water Process Engineering. 53, 103768. https://doi.org/10.1016/j.jwpe.2023.103768Priyadarshini, M., Das, I., Ghangrekar, M. M., Blaney, L. (2022). Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management. 316, 115295. https://doi.org/10.1016/j.jenvman.2022.115295Naveen Kumar, S., Jothi Ramalingam, R., Muthusamy, K., & Kavitha. (2023). Degradation of organic/inorganic pollutants through photofenton membrane bioreactor (PFMBR) and lumped kinetic modeling in pharmaceutical effluent. Chemical Engineering and Processing - Process Intensification, 185, 109305. https://doi.org/10.1016/j.cep.2023.109305Pérez-Verde, A., García-Muñoz, P., López-Muñoz, M. J., & Rodríguez-Chueca, J. (2024). Study of ilmenite and zero valent iron nanoparticles for persulfate activation in disinfection of wastewater. Journal of Environmental Chemical Engineering, 12(6), 114449. https://doi.org/10.1016/j.jece.2024.114449Quimbaya-Ñañez, C., Serna-Galvis, E. A., Silva-Agredo, J., Huerta, L., Torres-Palma, R. A., & Ávila-Torres, Y. (2024). Mn-based material derived from industrial sawdust for the elimination of ciprofloxacin: Loss of antibiotic activity and toxicity via carbocatalysis assisted by ultrasound. Journal of Environmental Chemical Engineering, 12(2), 112015. https://doi.org/10.1016/j.jece.2024.112015Serna Galvis, E. A. (2019). Application of advanced oxidation processes for the elimination of antibiotics and resistant bacteria in water. Universidad de Antioquia.Serna-Galvis, E. A., Cáceres-Peña, A. C., & Torres-Palma, R. A. (2020). Elimination of representative fluoroquinolones, penicillins, and cephalosporins by solar photo-Fenton: Degradation routes, primary transformations, degradation improvement by citric acid addition, and antimicrobial activity evolution. Environmental Science and Pollution Research, 27(33), 41381-41393. https://doi.org/10.1007/s11356-020-10069-8Serna-Galvis, E. A., Guateque-Londoño, J. F., Silva-Agredo, J., Porras, J., Ávila-Torres, Y., & Torres-Palma, R. A. (2021). Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways. Ultrasonics Sonochemistry, 80, 105814. https://doi.org/10.1016/j.ultsonch.2021.105814Serna-Galvis, E. A., Montoya-Rodríguez, D., Isaza-Pineda, L., Ibáñez, M., Hernández, F., Moncayo-Lasso, A., & Torres-Palma, R. A. (2019). Sonochemical degradation of antibiotics from representative classes-Considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrasonics Sonochemistry, 50, 157-165. https://doi.org/10.1016/j.ultsonch.2018.09.012Serna-Galvis, E. A., Porras, J., & Torres-Palma, R. A. (2022). A critical review on the sonochemical degradation of organic pollutants in urine, seawater, and mineral water. Ultrasonics Sonochemistry, 82, 105861. https://doi.org/10.1016/j.ultsonch.2021.105861Serna-Galvis, E. A., Silva-Agredo, J., Giraldo, A. L., Flórez, O. A., & Torres-Palma, R. A. (2016). Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO 2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chemical Engineering Journal, 284, 953-962. https://doi.org/10.1016/j.cej.2015.08.154Shah, N. S., Khan, J. A., Al-Muhtaseb, A. H., Sayed, M., Murtaza, B., & Khan, H. M. (2016). Synergistic effects of HSO 5 − in the gamma radiation driven process for the removal of chlorendic acid: A new alternative for water treatment. Chemical Engineering Journal, 306, 512-521. https://doi.org/10.1016/j.cej.2016.07.031Sheneni, V. D., Momoh, T. B., Edegbo, E. (2018). Effect of male and female urine on growth and phytochemical constituents of Zea Mays. Open Access Journal of Science. 2(6). DOI: 10.15406/oajs.2018.02.00105Venâncio, C., Caon, K., & Lopes, I. (2023). Cation Composition Influences the Toxicity of Salinity to Freshwater Biota. Int. J. Environ. Res. Public Health.Wang, S., Lu, W., Esakkimuthu, S., Chen, H., Yang, J., Mu, M., & Gong, X. (2023a). Life cycle assessment of carbon-based adsorbent preparation from algal biomass. Journal of Cleaner Production, 427, 139269. https://doi.org/10.1016/j.jclepro.2023.139269Xie, J., Zhang, C., & Waite, T. D. (2022). Hydroxyl radicals in anodic oxidation systems: Generation, identification and quantification. Water Research, 217, 118425. https://doi.org/10.1016/j.watres.2022.118425Zhou, Y., Gao, Y., Jiang, J., Shen, Y.M., Pang, S.Y., Song, Y., Guo, Q. (2021). A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group. Journal of Hazardous Materials. 5, 123834. https://doi.org/10.1016/j.jhazmat.2020.123834Liberación de FármacosDrug LiberationOrinaUrineFotoquímicaPhotochemistryUltrasonidoUltrasonicsElectroquímicaElectrochemistryProcesos de oxidación avanzadaFármacosCarbocatalizadorhttps://id.nlm.nih.gov/mesh/D065546https://id.nlm.nih.gov/mesh/D014556https://id.nlm.nih.gov/mesh/D010777https://id.nlm.nih.gov/mesh/D014465https://id.nlm.nih.gov/mesh/D004563ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosLat: 04 00 00 N degrees minutes Lat: 4.0000 decimal degrees Long: 072 00 00 W degrees minutes Long: -72.0000 decimal degreeshttp://vocab.getty.edu/page/tgn/1000050ColombiaPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/2c706b6e-6461-4841-93ee-ab7b7ff9f93d/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAdministratorREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/73bcafd7-424c-4fac-8796-6a4877df1996/download5643bfd9bcf29d560eeec56d584edaa9MD54falseAdministratorREADORIGINALMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdfMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdfapplication/pdf3729991https://bibliotecadigital.udea.edu.co/bitstreams/6672485c-f65a-49cb-9f1c-bbab80cb2a79/download4cb170cb0dbed583d9a7d6f84446d245MD55trueAdministratorREADTEXTMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdf.txtMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdf.txtExtracted texttext/plain102432https://bibliotecadigital.udea.edu.co/bitstreams/e1d49ae8-c596-4a20-a710-5b26a78e2103/download8f8e4500e52e8df72ab059f0d6050cceMD56falseAdministratorREADTHUMBNAILMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdf.jpgMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdf.jpgGenerated Thumbnailimage/jpeg7563https://bibliotecadigital.udea.edu.co/bitstreams/35ba20db-be61-41a8-8320-8cff97dc40dc/download0b55a09b9cf7fe87f11ccf3135793a06MD57falseAdministratorREAD10495/47286oai:bibliotecadigital.udea.edu.co:10495/472862025-09-04 04:03:43.301http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalrestrictedhttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.co