Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada
A nivel mundial, en las aguas residuales se ha detectado la presencia de compuestos orgánicos que permanecen en el ambiente, debido a que, los métodos convencionales de las Plantas de Tratamiento de Aguas Residuales (PTAR) son ineficientes para degradarlos; incluso, en diferentes regiones de Colombi...
- Autores:
-
Martínez Mena, Yudy Liceth
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/47286
- Acceso en línea:
- https://hdl.handle.net/10495/47286
- Palabra clave:
- Liberación de Fármacos
Drug Liberation
Orina
Urine
Fotoquímica
Photochemistry
Ultrasonido
Ultrasonics
Electroquímica
Electrochemistry
Procesos de oxidación avanzada
Fármacos
Carbocatalizador
https://id.nlm.nih.gov/mesh/D065546
https://id.nlm.nih.gov/mesh/D014556
https://id.nlm.nih.gov/mesh/D010777
https://id.nlm.nih.gov/mesh/D014465
https://id.nlm.nih.gov/mesh/D004563
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_73c7de12d4f9697e175390479dd4a083 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/47286 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada |
| title |
Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada |
| spellingShingle |
Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada Liberación de Fármacos Drug Liberation Orina Urine Fotoquímica Photochemistry Ultrasonido Ultrasonics Electroquímica Electrochemistry Procesos de oxidación avanzada Fármacos Carbocatalizador https://id.nlm.nih.gov/mesh/D065546 https://id.nlm.nih.gov/mesh/D014556 https://id.nlm.nih.gov/mesh/D010777 https://id.nlm.nih.gov/mesh/D014465 https://id.nlm.nih.gov/mesh/D004563 ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos |
| title_short |
Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada |
| title_full |
Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada |
| title_fullStr |
Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada |
| title_full_unstemmed |
Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada |
| title_sort |
Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzada |
| dc.creator.fl_str_mv |
Martínez Mena, Yudy Liceth |
| dc.contributor.advisor.none.fl_str_mv |
Serna Galvis, Efraím Adolfo Silva Agredo, Javier |
| dc.contributor.author.none.fl_str_mv |
Martínez Mena, Yudy Liceth |
| dc.contributor.researchgroup.none.fl_str_mv |
Grupo de Investigación en Remediación Ambiental y Biocatálisis |
| dc.contributor.jury.none.fl_str_mv |
Ramírez Sánchez, Carolina Granda Ramírez, Carlos Fidel |
| dc.subject.decs.none.fl_str_mv |
Liberación de Fármacos Drug Liberation Orina Urine Fotoquímica Photochemistry Ultrasonido Ultrasonics Electroquímica Electrochemistry |
| topic |
Liberación de Fármacos Drug Liberation Orina Urine Fotoquímica Photochemistry Ultrasonido Ultrasonics Electroquímica Electrochemistry Procesos de oxidación avanzada Fármacos Carbocatalizador https://id.nlm.nih.gov/mesh/D065546 https://id.nlm.nih.gov/mesh/D014556 https://id.nlm.nih.gov/mesh/D010777 https://id.nlm.nih.gov/mesh/D014465 https://id.nlm.nih.gov/mesh/D004563 ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos |
| dc.subject.proposal.spa.fl_str_mv |
Procesos de oxidación avanzada Fármacos Carbocatalizador |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D065546 https://id.nlm.nih.gov/mesh/D014556 https://id.nlm.nih.gov/mesh/D010777 https://id.nlm.nih.gov/mesh/D014465 https://id.nlm.nih.gov/mesh/D004563 |
| dc.subject.ods.none.fl_str_mv |
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos |
| description |
A nivel mundial, en las aguas residuales se ha detectado la presencia de compuestos orgánicos que permanecen en el ambiente, debido a que, los métodos convencionales de las Plantas de Tratamiento de Aguas Residuales (PTAR) son ineficientes para degradarlos; incluso, en diferentes regiones de Colombia, el agua residual no recibe ningún tratamiento y es descargada directamente en los cuerpos de agua naturales. Algunos de dichos compuestos se denominan contaminantes de preocupación emergente (CPE) y, entre estos, se encuentran algunos fármacos que tienen el potencial de generar efectos tóxicos en el ambiente y la salud humana, además de su tendencia a bioacumularse en las especies acuáticas, las cuales pueden hacer parte de la alimentación humana y favorecer la recirculación de contaminantes. En este trabajo, se abordó el estudio de la eficiencia de Procesos de Oxidación Avanzada (POA) fotoquímico, electroquímico, sonoquímico y carbocatalítico para la eliminación de los fármacos acetaminofén, levofloxacina y losartán en matrices acuosas como la orina, fuente de ingreso de los compuestos al medio ambiente, considerando la evaluación de efecto de parámetros, rutas de degradación y el alcance del tratamiento, con el fin de establecer el proceso más adecuado (desde tres ejes: técnico, ambiental y económico) y adaptable al contexto colombiano. A partir del presente trabajo de investigación, se encontró que la carbocatálisis en un proceso oxidativo con gran potencial para la eliminación de fármacos en orina en el país. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-09-03T16:41:54Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/47286 |
| url |
https://hdl.handle.net/10495/47286 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Amiri, Z., Moussavi, G., Mohammadi, S., & Giannakis, S. (2021). Development of a VUV-UVC/peroxymonosulfate, continuous-flow Advanced Oxidation Process for surface water disinfection and Natural Organic Matter elimination: Application and mechanistic aspects. Journal of Hazardous Materials, 408, 124634. https://doi.org/10.1016/j.jhazmat.2020.124634 Ataee, S., & Stephan, A. (2025). Life cycle assessment and material flow analysis of road and rail infrastructure assets – A critical review. Cleaner Environmental Systems, 100259. https://doi.org/10.1016/j.cesys.2025.100259 Cho, K., & Hoffmann, M. R. (2014). Urea Degradation by Electrochemically Generated Reactive Chlorine Species: Products and Reaction Pathways. Environmental Science & Technology, 48(19), 11504-11511. https://doi.org/10.1021/es5025405 Environmental management - Life cycle assessment - Principles and framework, First edit International Organization for Standardization 1 (1997). Espinoza-Montero, P.J., Alulema-Pullupaxi, P., Frontana-Uribe, B. A., Barrera-Diaz, C. E. (2022). Electrochemical production of hydrogen peroxide on Boron-Doped diamond (BDD) electrode. Solid State and Materials Science. 26(3):100988 https://doi.org/10.1016/j.cossms.2022.100988 Estrada-Flórez, S. E., Serna-Galvis, E. A., Lee, J., & Torres-Palma, R. A. (2024). Unraveling kinetic and synergistic effects during ultrasound-enhanced carbocatalysis for water remediation as a function of ultrasonic frequency. Journal of Environmental Management, 350, 119548. https://doi.org/10.1016/j.jenvman.2023.119548 Giannuzzi, L., Ortega, F., & Ventosi, E. (2018). CAPÍTULO 1 Principios generales de la toxicología (Universidad Nacional de La Plata. Facultad de Ciencias Exactas). Giménez, B. N., Schenone, A. V., & Conte, L. O. (2024). Exploring the role of hydrogen peroxide dosage strategies in the photo-Fenton process: Scaling from lab-scale to pilot plant solar reactor. Chemical Engineering Journal Advances, 19, 100627. https://doi.org/10.1016/j.ceja.2024.100627 Girón-Navarro, R., Martínez-Miranda, V., Teutli-Sequeira, E. A., Linares-Hernández, I., Martínez-Cienfuegos, I. G., Sánchez-Pozos, M., & Santoyo-Tepole, F. (2023). A solar photoFenton process with calcium peroxide from eggshell and ferrioxalate complexes for the degradation of the commercial herbicide 2,4-D in water. Journal of Photochemistry and Photobiology A: Chemistry, 438, 114550. https://doi.org/10.1016/j.jphotochem.2023.114550 Grisales, C. M., Salazar, L. M., & Garcia, D. P. (2019). Treatment of synthetic dye baths by Fenton processes: Evaluation of their environmental footprint through life cycle assessment. Environmental Science and Pollution Research, 26(5), 4300-4311. https://doi.org/10.1007/s11356-018-2757-9 Guateque-Londoño, J. F., Serna-Galvis, E. A., Ávila-Torres, Y., & Torres-Palma, R. A. (2020). Degradation of Losartan in Fresh Urine by Sonochemical and Photochemical Advanced Oxidation Processes. Water, 12(12), Article 12. https://doi.org/10.3390/w12123398 Guateque-Londoño, J. F., Serna-Galvis, E. A., Lee, J., Ávila-Torres, Y. P., & Torres-Palma, R. A. (2024). Intensifying the sonochemical degradation of hydrophilic organic contaminants by organic and inorganic additives. Journal of Environmental Management, 366, 121930. https://doi.org/10.1016/j.jenvman.2024.121930 Guateque-Londoño, J. F., Serna-Galvis, E. A., Silva-Agredo, J., Ávila-Torres, Y., & Torres-Palma, R. A. (2020). Dataset on the degradation of losartan by TiO2-photocatalysis and UVC/persulfate processes. Data in Brief, 31, 105692. https://doi.org/10.1016/j.dib.2020.105692 Guzmán-Duque, F. L., Palma-Goyes, R. E., González, I., Peñuela, G., & Torres-Palma, R. A. (2014). Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. Journal of Hazardous Materials, 278, 221-226. https://doi.org/10.1016/j.jhazmat.2014.05.076 Iqbal, J., Shah, N. S., Ali Khan, J., Naushad, Mu., Boczkaj, G., Jamil, F., Khan, S., Li, L., Murtaza, B., & Han, C. (2024). Pharmaceuticals wastewater treatment via different advanced oxidation processes: Reaction mechanism, operational factors, toxicities, and cost evaluation – A review. Separation and Purification Technology, 347, 127458. https://doi.org/10.1016/j.seppur.2024.127458 International Organization for Standardization, ISO. (2006). ISO 14040:2006 Environmental management—Life cycle assessment—Principles and framework. https://www.iso.org/standard/37456.html Montoya-Rodríguez, D. M., Serna-Galvis, E. A., Ferraro, F., & Torres-Palma, R. A. (2020). Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes—Parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. Journal of Environmental Management, 261, 110224. https://doi.org/10.1016/j.jenvman.2020.110224 Parthenidis, P., Evgenidou, E., Lambropoulou, D. (2023). Landfill leachate treatment by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs). Journal of Water Process Engineering. 53, 103768. https://doi.org/10.1016/j.jwpe.2023.103768 Priyadarshini, M., Das, I., Ghangrekar, M. M., Blaney, L. (2022). Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management. 316, 115295. https://doi.org/10.1016/j.jenvman.2022.115295 Naveen Kumar, S., Jothi Ramalingam, R., Muthusamy, K., & Kavitha. (2023). Degradation of organic/inorganic pollutants through photofenton membrane bioreactor (PFMBR) and lumped kinetic modeling in pharmaceutical effluent. Chemical Engineering and Processing - Process Intensification, 185, 109305. https://doi.org/10.1016/j.cep.2023.109305 Pérez-Verde, A., García-Muñoz, P., López-Muñoz, M. J., & Rodríguez-Chueca, J. (2024). Study of ilmenite and zero valent iron nanoparticles for persulfate activation in disinfection of wastewater. Journal of Environmental Chemical Engineering, 12(6), 114449. https://doi.org/10.1016/j.jece.2024.114449 Quimbaya-Ñañez, C., Serna-Galvis, E. A., Silva-Agredo, J., Huerta, L., Torres-Palma, R. A., & Ávila-Torres, Y. (2024). Mn-based material derived from industrial sawdust for the elimination of ciprofloxacin: Loss of antibiotic activity and toxicity via carbocatalysis assisted by ultrasound. Journal of Environmental Chemical Engineering, 12(2), 112015. https://doi.org/10.1016/j.jece.2024.112015 Serna Galvis, E. A. (2019). Application of advanced oxidation processes for the elimination of antibiotics and resistant bacteria in water. Universidad de Antioquia. Serna-Galvis, E. A., Cáceres-Peña, A. C., & Torres-Palma, R. A. (2020). Elimination of representative fluoroquinolones, penicillins, and cephalosporins by solar photo-Fenton: Degradation routes, primary transformations, degradation improvement by citric acid addition, and antimicrobial activity evolution. Environmental Science and Pollution Research, 27(33), 41381-41393. https://doi.org/10.1007/s11356-020-10069-8 Serna-Galvis, E. A., Guateque-Londoño, J. F., Silva-Agredo, J., Porras, J., Ávila-Torres, Y., & Torres-Palma, R. A. (2021). Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways. Ultrasonics Sonochemistry, 80, 105814. https://doi.org/10.1016/j.ultsonch.2021.105814 Serna-Galvis, E. A., Montoya-Rodríguez, D., Isaza-Pineda, L., Ibáñez, M., Hernández, F., Moncayo-Lasso, A., & Torres-Palma, R. A. (2019). Sonochemical degradation of antibiotics from representative classes-Considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrasonics Sonochemistry, 50, 157-165. https://doi.org/10.1016/j.ultsonch.2018.09.012 Serna-Galvis, E. A., Porras, J., & Torres-Palma, R. A. (2022). A critical review on the sonochemical degradation of organic pollutants in urine, seawater, and mineral water. Ultrasonics Sonochemistry, 82, 105861. https://doi.org/10.1016/j.ultsonch.2021.105861 Serna-Galvis, E. A., Silva-Agredo, J., Giraldo, A. L., Flórez, O. A., & Torres-Palma, R. A. (2016). Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO 2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chemical Engineering Journal, 284, 953-962. https://doi.org/10.1016/j.cej.2015.08.154 Shah, N. S., Khan, J. A., Al-Muhtaseb, A. H., Sayed, M., Murtaza, B., & Khan, H. M. (2016). Synergistic effects of HSO 5 − in the gamma radiation driven process for the removal of chlorendic acid: A new alternative for water treatment. Chemical Engineering Journal, 306, 512-521. https://doi.org/10.1016/j.cej.2016.07.031 Sheneni, V. D., Momoh, T. B., Edegbo, E. (2018). Effect of male and female urine on growth and phytochemical constituents of Zea Mays. Open Access Journal of Science. 2(6). DOI: 10.15406/oajs.2018.02.00105 Venâncio, C., Caon, K., & Lopes, I. (2023). Cation Composition Influences the Toxicity of Salinity to Freshwater Biota. Int. J. Environ. Res. Public Health. Wang, S., Lu, W., Esakkimuthu, S., Chen, H., Yang, J., Mu, M., & Gong, X. (2023a). Life cycle assessment of carbon-based adsorbent preparation from algal biomass. Journal of Cleaner Production, 427, 139269. https://doi.org/10.1016/j.jclepro.2023.139269 Xie, J., Zhang, C., & Waite, T. D. (2022). Hydroxyl radicals in anodic oxidation systems: Generation, identification and quantification. Water Research, 217, 118425. https://doi.org/10.1016/j.watres.2022.118425 Zhou, Y., Gao, Y., Jiang, J., Shen, Y.M., Pang, S.Y., Song, Y., Guo, Q. (2021). A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group. Journal of Hazardous Materials. 5, 123834. https://doi.org/10.1016/j.jhazmat.2020.123834 |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
92 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.coverage.box.none.fl_str_mv |
Lat: 04 00 00 N degrees minutes Lat: 4.0000 decimal degrees Long: 072 00 00 W degrees minutes Long: -72.0000 decimal degrees |
| dc.coverage.tgn.none.fl_str_mv |
http://vocab.getty.edu/page/tgn/1000050 |
| dc.coverage.country.none.fl_str_mv |
Colombia |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Maestría en Ciencias Farmacéuticas y Alimentarias |
| dc.publisher.place.none.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Farmacéuticas y Alimentarias |
| dc.publisher.branch.none.fl_str_mv |
Campus Medellín - Ciudad Universitaria |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/2c706b6e-6461-4841-93ee-ab7b7ff9f93d/download https://bibliotecadigital.udea.edu.co/bitstreams/73bcafd7-424c-4fac-8796-6a4877df1996/download https://bibliotecadigital.udea.edu.co/bitstreams/6672485c-f65a-49cb-9f1c-bbab80cb2a79/download https://bibliotecadigital.udea.edu.co/bitstreams/e1d49ae8-c596-4a20-a710-5b26a78e2103/download https://bibliotecadigital.udea.edu.co/bitstreams/35ba20db-be61-41a8-8320-8cff97dc40dc/download |
| bitstream.checksum.fl_str_mv |
b76e7a76e24cf2f94b3ce0ae5ed275d0 5643bfd9bcf29d560eeec56d584edaa9 4cb170cb0dbed583d9a7d6f84446d245 8f8e4500e52e8df72ab059f0d6050cce 0b55a09b9cf7fe87f11ccf3135793a06 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052261266948096 |
| spelling |
Serna Galvis, Efraím AdolfoSilva Agredo, JavierMartínez Mena, Yudy LicethGrupo de Investigación en Remediación Ambiental y BiocatálisisRamírez Sánchez, CarolinaGranda Ramírez, Carlos Fidel2025-09-03T16:41:54Z2025https://hdl.handle.net/10495/47286A nivel mundial, en las aguas residuales se ha detectado la presencia de compuestos orgánicos que permanecen en el ambiente, debido a que, los métodos convencionales de las Plantas de Tratamiento de Aguas Residuales (PTAR) son ineficientes para degradarlos; incluso, en diferentes regiones de Colombia, el agua residual no recibe ningún tratamiento y es descargada directamente en los cuerpos de agua naturales. Algunos de dichos compuestos se denominan contaminantes de preocupación emergente (CPE) y, entre estos, se encuentran algunos fármacos que tienen el potencial de generar efectos tóxicos en el ambiente y la salud humana, además de su tendencia a bioacumularse en las especies acuáticas, las cuales pueden hacer parte de la alimentación humana y favorecer la recirculación de contaminantes. En este trabajo, se abordó el estudio de la eficiencia de Procesos de Oxidación Avanzada (POA) fotoquímico, electroquímico, sonoquímico y carbocatalítico para la eliminación de los fármacos acetaminofén, levofloxacina y losartán en matrices acuosas como la orina, fuente de ingreso de los compuestos al medio ambiente, considerando la evaluación de efecto de parámetros, rutas de degradación y el alcance del tratamiento, con el fin de establecer el proceso más adecuado (desde tres ejes: técnico, ambiental y económico) y adaptable al contexto colombiano. A partir del presente trabajo de investigación, se encontró que la carbocatálisis en un proceso oxidativo con gran potencial para la eliminación de fármacos en orina en el país.The presence of organic compounds that remain in the environment has been detected in wastewater worldwide because the conventional methods at wastewater treatment plants (WWTPs) are inefficient to degrade them. In different regions of Colombia, wastewater does not receive any treatment and is discharged directly into natural water. Some of these compounds are called contaminants of emerging concern (CEC) e.g., pharmaceuticals, which have the potential to generate toxic effects on the environment and human health. Also, pharmaceuticals tend to bioaccumulate through aquatic species, which can be part of the human diet and favor the recirculation of pollutants. In this work, the efficiency of photochemical, electrochemical, sonochemicaland carbocatalytic Advanced Oxidation Processes (AOP) for the elimination of acetaminophen, levofloxacin and losartán in aqueous matrices such as urine was studied, considering the evaluation of the effect of parameters, degradation routes and the scope of treatment, in order to establish the most appropriate process (considering 3 aspects: technical, environmental, and economic) and adaptable to the Colombian context. From this research, it was found that carbocatalysis is an oxidative process with great potential for the elimination of drugs in urine in our country.CODI 2022-53586Medicamentos, cosméticos y afinesCOL0125116TESIS CON DISTINCIÓN: Cum Laude (Meritoria)MaestríaMagíster en Ciencias Farmacéuticas y Alimentarias92 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en Ciencias Farmacéuticas y AlimentariasMedellín, ColombiaFacultad de Ciencias Farmacéuticas y AlimentariasCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Eliminación de fármacos en orina mediante procesos fisicoquímicos de oxidación avanzadaTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftAmiri, Z., Moussavi, G., Mohammadi, S., & Giannakis, S. (2021). Development of a VUV-UVC/peroxymonosulfate, continuous-flow Advanced Oxidation Process for surface water disinfection and Natural Organic Matter elimination: Application and mechanistic aspects. Journal of Hazardous Materials, 408, 124634. https://doi.org/10.1016/j.jhazmat.2020.124634Ataee, S., & Stephan, A. (2025). Life cycle assessment and material flow analysis of road and rail infrastructure assets – A critical review. Cleaner Environmental Systems, 100259. https://doi.org/10.1016/j.cesys.2025.100259Cho, K., & Hoffmann, M. R. (2014). Urea Degradation by Electrochemically Generated Reactive Chlorine Species: Products and Reaction Pathways. Environmental Science & Technology, 48(19), 11504-11511. https://doi.org/10.1021/es5025405Environmental management - Life cycle assessment - Principles and framework, First edit International Organization for Standardization 1 (1997).Espinoza-Montero, P.J., Alulema-Pullupaxi, P., Frontana-Uribe, B. A., Barrera-Diaz, C. E. (2022). Electrochemical production of hydrogen peroxide on Boron-Doped diamond (BDD) electrode. Solid State and Materials Science. 26(3):100988 https://doi.org/10.1016/j.cossms.2022.100988Estrada-Flórez, S. E., Serna-Galvis, E. A., Lee, J., & Torres-Palma, R. A. (2024). Unraveling kinetic and synergistic effects during ultrasound-enhanced carbocatalysis for water remediation as a function of ultrasonic frequency. Journal of Environmental Management, 350, 119548. https://doi.org/10.1016/j.jenvman.2023.119548Giannuzzi, L., Ortega, F., & Ventosi, E. (2018). CAPÍTULO 1 Principios generales de la toxicología (Universidad Nacional de La Plata. Facultad de Ciencias Exactas).Giménez, B. N., Schenone, A. V., & Conte, L. O. (2024). Exploring the role of hydrogen peroxide dosage strategies in the photo-Fenton process: Scaling from lab-scale to pilot plant solar reactor. Chemical Engineering Journal Advances, 19, 100627. https://doi.org/10.1016/j.ceja.2024.100627Girón-Navarro, R., Martínez-Miranda, V., Teutli-Sequeira, E. A., Linares-Hernández, I., Martínez-Cienfuegos, I. G., Sánchez-Pozos, M., & Santoyo-Tepole, F. (2023). A solar photoFenton process with calcium peroxide from eggshell and ferrioxalate complexes for the degradation of the commercial herbicide 2,4-D in water. Journal of Photochemistry and Photobiology A: Chemistry, 438, 114550. https://doi.org/10.1016/j.jphotochem.2023.114550Grisales, C. M., Salazar, L. M., & Garcia, D. P. (2019). Treatment of synthetic dye baths by Fenton processes: Evaluation of their environmental footprint through life cycle assessment. Environmental Science and Pollution Research, 26(5), 4300-4311. https://doi.org/10.1007/s11356-018-2757-9Guateque-Londoño, J. F., Serna-Galvis, E. A., Ávila-Torres, Y., & Torres-Palma, R. A. (2020). Degradation of Losartan in Fresh Urine by Sonochemical and Photochemical Advanced Oxidation Processes. Water, 12(12), Article 12. https://doi.org/10.3390/w12123398Guateque-Londoño, J. F., Serna-Galvis, E. A., Lee, J., Ávila-Torres, Y. P., & Torres-Palma, R. A. (2024). Intensifying the sonochemical degradation of hydrophilic organic contaminants by organic and inorganic additives. Journal of Environmental Management, 366, 121930. https://doi.org/10.1016/j.jenvman.2024.121930Guateque-Londoño, J. F., Serna-Galvis, E. A., Silva-Agredo, J., Ávila-Torres, Y., & Torres-Palma, R. A. (2020). Dataset on the degradation of losartan by TiO2-photocatalysis and UVC/persulfate processes. Data in Brief, 31, 105692. https://doi.org/10.1016/j.dib.2020.105692Guzmán-Duque, F. L., Palma-Goyes, R. E., González, I., Peñuela, G., & Torres-Palma, R. A. (2014). Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. Journal of Hazardous Materials, 278, 221-226. https://doi.org/10.1016/j.jhazmat.2014.05.076Iqbal, J., Shah, N. S., Ali Khan, J., Naushad, Mu., Boczkaj, G., Jamil, F., Khan, S., Li, L., Murtaza, B., & Han, C. (2024). Pharmaceuticals wastewater treatment via different advanced oxidation processes: Reaction mechanism, operational factors, toxicities, and cost evaluation – A review. Separation and Purification Technology, 347, 127458. https://doi.org/10.1016/j.seppur.2024.127458International Organization for Standardization, ISO. (2006). ISO 14040:2006 Environmental management—Life cycle assessment—Principles and framework. https://www.iso.org/standard/37456.htmlMontoya-Rodríguez, D. M., Serna-Galvis, E. A., Ferraro, F., & Torres-Palma, R. A. (2020). Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes—Parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. Journal of Environmental Management, 261, 110224. https://doi.org/10.1016/j.jenvman.2020.110224Parthenidis, P., Evgenidou, E., Lambropoulou, D. (2023). Landfill leachate treatment by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs). Journal of Water Process Engineering. 53, 103768. https://doi.org/10.1016/j.jwpe.2023.103768Priyadarshini, M., Das, I., Ghangrekar, M. M., Blaney, L. (2022). Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. Journal of Environmental Management. 316, 115295. https://doi.org/10.1016/j.jenvman.2022.115295Naveen Kumar, S., Jothi Ramalingam, R., Muthusamy, K., & Kavitha. (2023). Degradation of organic/inorganic pollutants through photofenton membrane bioreactor (PFMBR) and lumped kinetic modeling in pharmaceutical effluent. Chemical Engineering and Processing - Process Intensification, 185, 109305. https://doi.org/10.1016/j.cep.2023.109305Pérez-Verde, A., García-Muñoz, P., López-Muñoz, M. J., & Rodríguez-Chueca, J. (2024). Study of ilmenite and zero valent iron nanoparticles for persulfate activation in disinfection of wastewater. Journal of Environmental Chemical Engineering, 12(6), 114449. https://doi.org/10.1016/j.jece.2024.114449Quimbaya-Ñañez, C., Serna-Galvis, E. A., Silva-Agredo, J., Huerta, L., Torres-Palma, R. A., & Ávila-Torres, Y. (2024). Mn-based material derived from industrial sawdust for the elimination of ciprofloxacin: Loss of antibiotic activity and toxicity via carbocatalysis assisted by ultrasound. Journal of Environmental Chemical Engineering, 12(2), 112015. https://doi.org/10.1016/j.jece.2024.112015Serna Galvis, E. A. (2019). Application of advanced oxidation processes for the elimination of antibiotics and resistant bacteria in water. Universidad de Antioquia.Serna-Galvis, E. A., Cáceres-Peña, A. C., & Torres-Palma, R. A. (2020). Elimination of representative fluoroquinolones, penicillins, and cephalosporins by solar photo-Fenton: Degradation routes, primary transformations, degradation improvement by citric acid addition, and antimicrobial activity evolution. Environmental Science and Pollution Research, 27(33), 41381-41393. https://doi.org/10.1007/s11356-020-10069-8Serna-Galvis, E. A., Guateque-Londoño, J. F., Silva-Agredo, J., Porras, J., Ávila-Torres, Y., & Torres-Palma, R. A. (2021). Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways. Ultrasonics Sonochemistry, 80, 105814. https://doi.org/10.1016/j.ultsonch.2021.105814Serna-Galvis, E. A., Montoya-Rodríguez, D., Isaza-Pineda, L., Ibáñez, M., Hernández, F., Moncayo-Lasso, A., & Torres-Palma, R. A. (2019). Sonochemical degradation of antibiotics from representative classes-Considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrasonics Sonochemistry, 50, 157-165. https://doi.org/10.1016/j.ultsonch.2018.09.012Serna-Galvis, E. A., Porras, J., & Torres-Palma, R. A. (2022). A critical review on the sonochemical degradation of organic pollutants in urine, seawater, and mineral water. Ultrasonics Sonochemistry, 82, 105861. https://doi.org/10.1016/j.ultsonch.2021.105861Serna-Galvis, E. A., Silva-Agredo, J., Giraldo, A. L., Flórez, O. A., & Torres-Palma, R. A. (2016). Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO 2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chemical Engineering Journal, 284, 953-962. https://doi.org/10.1016/j.cej.2015.08.154Shah, N. S., Khan, J. A., Al-Muhtaseb, A. H., Sayed, M., Murtaza, B., & Khan, H. M. (2016). Synergistic effects of HSO 5 − in the gamma radiation driven process for the removal of chlorendic acid: A new alternative for water treatment. Chemical Engineering Journal, 306, 512-521. https://doi.org/10.1016/j.cej.2016.07.031Sheneni, V. D., Momoh, T. B., Edegbo, E. (2018). Effect of male and female urine on growth and phytochemical constituents of Zea Mays. Open Access Journal of Science. 2(6). DOI: 10.15406/oajs.2018.02.00105Venâncio, C., Caon, K., & Lopes, I. (2023). Cation Composition Influences the Toxicity of Salinity to Freshwater Biota. Int. J. Environ. Res. Public Health.Wang, S., Lu, W., Esakkimuthu, S., Chen, H., Yang, J., Mu, M., & Gong, X. (2023a). Life cycle assessment of carbon-based adsorbent preparation from algal biomass. Journal of Cleaner Production, 427, 139269. https://doi.org/10.1016/j.jclepro.2023.139269Xie, J., Zhang, C., & Waite, T. D. (2022). Hydroxyl radicals in anodic oxidation systems: Generation, identification and quantification. Water Research, 217, 118425. https://doi.org/10.1016/j.watres.2022.118425Zhou, Y., Gao, Y., Jiang, J., Shen, Y.M., Pang, S.Y., Song, Y., Guo, Q. (2021). A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group. Journal of Hazardous Materials. 5, 123834. https://doi.org/10.1016/j.jhazmat.2020.123834Liberación de FármacosDrug LiberationOrinaUrineFotoquímicaPhotochemistryUltrasonidoUltrasonicsElectroquímicaElectrochemistryProcesos de oxidación avanzadaFármacosCarbocatalizadorhttps://id.nlm.nih.gov/mesh/D065546https://id.nlm.nih.gov/mesh/D014556https://id.nlm.nih.gov/mesh/D010777https://id.nlm.nih.gov/mesh/D014465https://id.nlm.nih.gov/mesh/D004563ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosLat: 04 00 00 N degrees minutes Lat: 4.0000 decimal degrees Long: 072 00 00 W degrees minutes Long: -72.0000 decimal degreeshttp://vocab.getty.edu/page/tgn/1000050ColombiaPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/2c706b6e-6461-4841-93ee-ab7b7ff9f93d/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAdministratorREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/73bcafd7-424c-4fac-8796-6a4877df1996/download5643bfd9bcf29d560eeec56d584edaa9MD54falseAdministratorREADORIGINALMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdfMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdfapplication/pdf3729991https://bibliotecadigital.udea.edu.co/bitstreams/6672485c-f65a-49cb-9f1c-bbab80cb2a79/download4cb170cb0dbed583d9a7d6f84446d245MD55trueAdministratorREADTEXTMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdf.txtMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdf.txtExtracted texttext/plain102432https://bibliotecadigital.udea.edu.co/bitstreams/e1d49ae8-c596-4a20-a710-5b26a78e2103/download8f8e4500e52e8df72ab059f0d6050cceMD56falseAdministratorREADTHUMBNAILMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdf.jpgMartinezYudy_2025_Oxidacion_Farmacos_Orina.pdf.jpgGenerated Thumbnailimage/jpeg7563https://bibliotecadigital.udea.edu.co/bitstreams/35ba20db-be61-41a8-8320-8cff97dc40dc/download0b55a09b9cf7fe87f11ccf3135793a06MD57falseAdministratorREAD10495/47286oai:bibliotecadigital.udea.edu.co:10495/472862025-09-04 04:03:43.301http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalrestrictedhttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.co |
