Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum

ABSTRACT: Multilocus genotyping of microbial pathogens has revealed a range of population structures, with some bacteria showing extensive recombination and others showing almost complete clonality. The population structure of the protozoan parasite Plasmodium falciparum has been harder to evaluate,...

Full description

Autores:
Vélez Bernal, Iván Darío
Haubold, Bernhard
Williams, Jeff T.
Estrada Franco, José G.
Richardson, Lynne
Mollinedo, Rene
Bockarie, Moses
Mokili, John
Mharakurwa, Sungano
French, Neil
Whitworth, Jim
Anderson, Timothy J. C.
Brockman, Alan H.
Nosten, Francois
Ferreira, Marcelo U.
Day, Karten P.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2000
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/43159
Acceso en línea:
https://hdl.handle.net/10495/43159
Palabra clave:
África - epidemiología
Africa - epidemiology
Evolución Biológica
Biological Evolution
Evolución Molecular
Evolution, Molecular
Frecuencia de los Genes
Gene Frequency
Variación Genética
Genetic Variation
Genotipo
Genotype
Malaria Falciparum - epidemiología
Malaria, Falciparum - epidemiology
Desequilibrio de Ligamiento
Linkage Disequilibrium
Papúa Nueva Guinea
Plasmodium falciparum
América del Sur
South America
https://id.nlm.nih.gov/mesh/D000349
https://id.nlm.nih.gov/mesh/D005075
https://id.nlm.nih.gov/mesh/D019143
https://id.nlm.nih.gov/mesh/D005787
https://id.nlm.nih.gov/mesh/D014644
https://id.nlm.nih.gov/mesh/D005838
https://id.nlm.nih.gov/mesh/D016778
https://id.nlm.nih.gov/mesh/D015810
https://id.nlm.nih.gov/mesh/D010963
https://id.nlm.nih.gov/mesh/D013020
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
Description
Summary:ABSTRACT: Multilocus genotyping of microbial pathogens has revealed a range of population structures, with some bacteria showing extensive recombination and others showing almost complete clonality. The population structure of the protozoan parasite Plasmodium falciparum has been harder to evaluate, since most studies have used a limited number of antigen-encoding loci that are known to be under strong selection. We describe length variation at 12 microsatellite loci in 465 infections collected from 9 locations worldwide. These data reveal dramatic differences in parasite population structure in different locations. Strong linkage disequilibrium (LD) was observed in six of nine populations. Significant LD occurred in all locations with prevalence <1% and in only two of five of the populations from regions with higher transmission intensities. Where present, LD results largely from the presence of identical multilocus genotypes within populations, suggesting high levels of self-fertilization in populations with low levels of transmission. We also observed dramatic variation in diversity and geographical differentiation in different regions. Mean heterozygosities in South American countries (0.3-0.4) were less than half those observed in African locations (0. 76-0.8), with intermediate heterozygosities in the Southeast Asia/Pacific samples (0.51-0.65). Furthermore, variation was distributed among locations in South America (F:(ST) = 0.364) and within locations in Africa (F:(ST) = 0.007). The intraspecific patterns of diversity and genetic differentiation observed in P. falciparum are strikingly similar to those seen in interspecific comparisons of plants and animals with differing levels of outcrossing, suggesting that similar processes may be involved. The differences observed may also reflect the recent colonization of non-African populations from an African source, and the relative influences of epidemiology and population history are difficult to disentangle. These data reveal a range of population structures within a single pathogen species and suggest intimate links between patterns of epidemiology and genetic structure in this organism.