Analysis of Conformational Preferences in Caffeine
ABSTRACT: High level DLPNO–CCSD(T) electronic structure calculations with extended basis sets over B3LYP–D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C–H bond on the same plane of the aromatic...
- Autores:
-
Rojas Valencia, Natalia Andrea
Restrepo Cossio, Albeiro Alonso
Gómez, Sara
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/41663
- Acceso en línea:
- https://hdl.handle.net/10495/41663
- Palabra clave:
- Cafeína
Caffeine
Conformación Molecular
Molecular Conformation
Teoría Cuántica
Quantum Theory
Electricidad Estática
Static Electricity
https://id.nlm.nih.gov/mesh/D002110
https://id.nlm.nih.gov/mesh/D008968
https://id.nlm.nih.gov/mesh/D011789
https://id.nlm.nih.gov/mesh/D055672
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_726b69820164fa5389e4ca17a8389ef6 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/41663 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Analysis of Conformational Preferences in Caffeine |
| title |
Analysis of Conformational Preferences in Caffeine |
| spellingShingle |
Analysis of Conformational Preferences in Caffeine Cafeína Caffeine Conformación Molecular Molecular Conformation Teoría Cuántica Quantum Theory Electricidad Estática Static Electricity https://id.nlm.nih.gov/mesh/D002110 https://id.nlm.nih.gov/mesh/D008968 https://id.nlm.nih.gov/mesh/D011789 https://id.nlm.nih.gov/mesh/D055672 |
| title_short |
Analysis of Conformational Preferences in Caffeine |
| title_full |
Analysis of Conformational Preferences in Caffeine |
| title_fullStr |
Analysis of Conformational Preferences in Caffeine |
| title_full_unstemmed |
Analysis of Conformational Preferences in Caffeine |
| title_sort |
Analysis of Conformational Preferences in Caffeine |
| dc.creator.fl_str_mv |
Rojas Valencia, Natalia Andrea Restrepo Cossio, Albeiro Alonso Gómez, Sara |
| dc.contributor.author.none.fl_str_mv |
Rojas Valencia, Natalia Andrea Restrepo Cossio, Albeiro Alonso Gómez, Sara |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Química-Física Teórica |
| dc.subject.decs.none.fl_str_mv |
Cafeína Caffeine Conformación Molecular Molecular Conformation Teoría Cuántica Quantum Theory Electricidad Estática Static Electricity |
| topic |
Cafeína Caffeine Conformación Molecular Molecular Conformation Teoría Cuántica Quantum Theory Electricidad Estática Static Electricity https://id.nlm.nih.gov/mesh/D002110 https://id.nlm.nih.gov/mesh/D008968 https://id.nlm.nih.gov/mesh/D011789 https://id.nlm.nih.gov/mesh/D055672 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D002110 https://id.nlm.nih.gov/mesh/D008968 https://id.nlm.nih.gov/mesh/D011789 https://id.nlm.nih.gov/mesh/D055672 |
| description |
ABSTRACT: High level DLPNO–CCSD(T) electronic structure calculations with extended basis sets over B3LYP–D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C–H bond on the same plane of the aromatic system, leading to the C–H bonds eclipsing one carbonyl group, one heavily delocalized C–N bond constituent of the fused double ring aromatic system, and one C–H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional –CH3 aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives. |
| publishDate |
2022 |
| dc.date.issued.none.fl_str_mv |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2024-09-02T11:39:16Z |
| dc.date.available.none.fl_str_mv |
2024-09-02T11:39:16Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Gómez S, Rojas-Valencia N, Restrepo A. Analysis of Conformational Preferences in Caffeine. Molecules. 2022 Mar 17;27(6):1937. doi: 10.3390/molecules27061937. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/41663 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/molecules27061937 |
| dc.identifier.eissn.none.fl_str_mv |
1420-3049 |
| identifier_str_mv |
Gómez S, Rojas-Valencia N, Restrepo A. Analysis of Conformational Preferences in Caffeine. Molecules. 2022 Mar 17;27(6):1937. doi: 10.3390/molecules27061937. 10.3390/molecules27061937 1420-3049 |
| url |
https://hdl.handle.net/10495/41663 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Molecules |
| dc.relation.citationendpage.spa.fl_str_mv |
15 |
| dc.relation.citationissue.spa.fl_str_mv |
6 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
27 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Molecules |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
15 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
MDPI |
| dc.publisher.place.spa.fl_str_mv |
Basilea, Suiza |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/00b627cb-ef78-473e-b814-00489e14dc06/download https://bibliotecadigital.udea.edu.co/bitstreams/a5e027c3-5b83-4b5a-924f-f19dbce9367d/download https://bibliotecadigital.udea.edu.co/bitstreams/78a0a07e-588e-4a09-a23f-146567f1be95/download https://bibliotecadigital.udea.edu.co/bitstreams/be02858e-6019-45c8-b84f-4acc1f6c92f6/download https://bibliotecadigital.udea.edu.co/bitstreams/7d7b20cd-b40f-499b-9084-5f8e49c94f47/download https://bibliotecadigital.udea.edu.co/bitstreams/3974d5b7-eabb-4d28-b079-64bf338f4df5/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 991bd6ab46fa9ec3614f163f1e7e44d5 f660235a29d086af92b19d650e24e1cc 1646d1f6b96dbbbc38035efc9239ac9c 57fd832e9dc1a54b2f3d1f8e3c1f8175 3b8c30010ac7d20fb41b2371f62a2c03 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052228272455680 |
| spelling |
Rojas Valencia, Natalia AndreaRestrepo Cossio, Albeiro AlonsoGómez, SaraGrupo de Química-Física Teórica2024-09-02T11:39:16Z2024-09-02T11:39:16Z2022Gómez S, Rojas-Valencia N, Restrepo A. Analysis of Conformational Preferences in Caffeine. Molecules. 2022 Mar 17;27(6):1937. doi: 10.3390/molecules27061937.https://hdl.handle.net/10495/4166310.3390/molecules270619371420-3049ABSTRACT: High level DLPNO–CCSD(T) electronic structure calculations with extended basis sets over B3LYP–D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C–H bond on the same plane of the aromatic system, leading to the C–H bonds eclipsing one carbonyl group, one heavily delocalized C–N bond constituent of the fused double ring aromatic system, and one C–H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional –CH3 aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODICOL000439915 páginasapplication/pdfengMDPIBasilea, Suizahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Analysis of Conformational Preferences in CaffeineArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCafeínaCaffeineConformación MolecularMolecular ConformationTeoría CuánticaQuantum TheoryElectricidad EstáticaStatic Electricityhttps://id.nlm.nih.gov/mesh/D002110https://id.nlm.nih.gov/mesh/D008968https://id.nlm.nih.gov/mesh/D011789https://id.nlm.nih.gov/mesh/D055672Molecules156127MoleculesCODI 2019–25332RoR:03bp5hc83PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/00b627cb-ef78-473e-b814-00489e14dc06/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADORIGINALRojasNatalia_2022_Analysis_Preferences_Caffeine.pdfRojasNatalia_2022_Analysis_Preferences_Caffeine.pdfArtículo de investigaciónapplication/pdf7204782https://bibliotecadigital.udea.edu.co/bitstreams/a5e027c3-5b83-4b5a-924f-f19dbce9367d/download991bd6ab46fa9ec3614f163f1e7e44d5MD51trueAnonymousREADRojasNatalia_2022_Analysis_Preferences_Caffeine.epubRojasNatalia_2022_Analysis_Preferences_Caffeine.epubArtículo de investigaciónapplication/epub+zip11880723https://bibliotecadigital.udea.edu.co/bitstreams/78a0a07e-588e-4a09-a23f-146567f1be95/downloadf660235a29d086af92b19d650e24e1ccMD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/be02858e-6019-45c8-b84f-4acc1f6c92f6/download1646d1f6b96dbbbc38035efc9239ac9cMD53falseAnonymousREADTEXTRojasNatalia_2022_Analysis_Preferences_Caffeine.pdf.txtRojasNatalia_2022_Analysis_Preferences_Caffeine.pdf.txtExtracted texttext/plain57944https://bibliotecadigital.udea.edu.co/bitstreams/7d7b20cd-b40f-499b-9084-5f8e49c94f47/download57fd832e9dc1a54b2f3d1f8e3c1f8175MD55falseAnonymousREADTHUMBNAILRojasNatalia_2022_Analysis_Preferences_Caffeine.pdf.jpgRojasNatalia_2022_Analysis_Preferences_Caffeine.pdf.jpgGenerated Thumbnailimage/jpeg15118https://bibliotecadigital.udea.edu.co/bitstreams/3974d5b7-eabb-4d28-b079-64bf338f4df5/download3b8c30010ac7d20fb41b2371f62a2c03MD56falseAnonymousREAD10495/41663oai:bibliotecadigital.udea.edu.co:10495/416632025-03-26 18:57:39.784http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
