Predicción de retiro de clientes bancarios
RESUMEN : En el mundo empresarial moderno, la fidelización y retención de clientes se han convertido en elementos esenciales y críticos a la hora de definir estrategias y políticas que reduzcan la deserción de clientes hacia otros mercados y/o productos. Perder clientes es más costoso que atraer nue...
- Autores:
-
Alcocer Cáceres, Jose Luis
Chaverra Bedoya, Juan Carlos
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35744
- Acceso en línea:
- https://hdl.handle.net/10495/35744
- Palabra clave:
- Análisis de datos
Data analysis
Aprendizaje automático (inteligencia artificial)
Machine learning
Bancos
Banks and banking
Comportamiento del consumidor
Perfilación del del consumidor
http://vocabularies.unesco.org/thesaurus/concept2214
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_71f9caf25148d6cd2cc53b498c6ddf62 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/35744 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Predicción de retiro de clientes bancarios |
| title |
Predicción de retiro de clientes bancarios |
| spellingShingle |
Predicción de retiro de clientes bancarios Análisis de datos Data analysis Aprendizaje automático (inteligencia artificial) Machine learning Bancos Banks and banking Comportamiento del consumidor Perfilación del del consumidor http://vocabularies.unesco.org/thesaurus/concept2214 |
| title_short |
Predicción de retiro de clientes bancarios |
| title_full |
Predicción de retiro de clientes bancarios |
| title_fullStr |
Predicción de retiro de clientes bancarios |
| title_full_unstemmed |
Predicción de retiro de clientes bancarios |
| title_sort |
Predicción de retiro de clientes bancarios |
| dc.creator.fl_str_mv |
Alcocer Cáceres, Jose Luis Chaverra Bedoya, Juan Carlos |
| dc.contributor.advisor.none.fl_str_mv |
Quiza Montealegre, Jhon Jair |
| dc.contributor.author.none.fl_str_mv |
Alcocer Cáceres, Jose Luis Chaverra Bedoya, Juan Carlos |
| dc.subject.unesco.none.fl_str_mv |
Análisis de datos Data analysis |
| topic |
Análisis de datos Data analysis Aprendizaje automático (inteligencia artificial) Machine learning Bancos Banks and banking Comportamiento del consumidor Perfilación del del consumidor http://vocabularies.unesco.org/thesaurus/concept2214 |
| dc.subject.lemb.none.fl_str_mv |
Aprendizaje automático (inteligencia artificial) Machine learning Bancos Banks and banking Comportamiento del consumidor Perfilación del del consumidor |
| dc.subject.unescouri.none.fl_str_mv |
http://vocabularies.unesco.org/thesaurus/concept2214 |
| description |
RESUMEN : En el mundo empresarial moderno, la fidelización y retención de clientes se han convertido en elementos esenciales y críticos a la hora de definir estrategias y políticas que reduzcan la deserción de clientes hacia otros mercados y/o productos. Perder clientes es más costoso que atraer nuevos. El estudio del comportamiento de los clientes, en particular de su deserción, se ha convertido en una necesidad urgente dentro del ámbito empresarial. En las empresas financieras, especialmente en los bancos, es un factor crítico entender las deserciones y poder predecir dicho comportamiento. El objetivo principal de este trabajo es encontrar patrones en los datos que permitan identificar y comprender las deserciones, mediante la realización de diferentes iteraciones sobre los datos y utilizando las diferentes técnicas que se abordan en la especialidad de Analítica y Data Science de la Universidad de Antioquia. El proceso comienza con una primera iteración evaluando los datos a través de un modelo de regresión logística. A partir de ahí, iteraciones posteriores permiten evaluar modelos de aprendizaje automático en busca del modelo óptimo y mejores resultados |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-07-04T14:57:43Z |
| dc.date.available.none.fl_str_mv |
2023-07-04T14:57:43Z |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Especialización |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_46ec |
| dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/COther |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/other |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_46ec |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/35744 |
| url |
https://hdl.handle.net/10495/35744 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.relation.issupplementedby.spa.fl_str_mv |
https://github.com/jolual2747/bank-customer-churn-prediction |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
31 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería. Especialización en Analítica y Ciencia de Datos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/ae9322fd-4a82-47e1-835d-c0eb6e9c11f0/download https://bibliotecadigital.udea.edu.co/bitstreams/d2ea9b96-aa66-40d9-a5fe-67116f7229e1/download https://bibliotecadigital.udea.edu.co/bitstreams/d57cddf4-d88d-4cfe-8cf3-efa3f597c195/download https://bibliotecadigital.udea.edu.co/bitstreams/2348fa62-7063-40bf-bd27-02c81e722284/download https://bibliotecadigital.udea.edu.co/bitstreams/3891692c-256c-4019-9f6e-0a6a5d0e2223/download |
| bitstream.checksum.fl_str_mv |
70e3711e661e81155697fe82cb3f50bd b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 093d9df92f06d8840891fbbea3fca9fa 9ae67bdd50ce4e271c8c32d4750f9b2d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052414907449344 |
| spelling |
Quiza Montealegre, Jhon JairAlcocer Cáceres, Jose LuisChaverra Bedoya, Juan Carlos2023-07-04T14:57:43Z2023-07-04T14:57:43Z2023https://hdl.handle.net/10495/35744RESUMEN : En el mundo empresarial moderno, la fidelización y retención de clientes se han convertido en elementos esenciales y críticos a la hora de definir estrategias y políticas que reduzcan la deserción de clientes hacia otros mercados y/o productos. Perder clientes es más costoso que atraer nuevos. El estudio del comportamiento de los clientes, en particular de su deserción, se ha convertido en una necesidad urgente dentro del ámbito empresarial. En las empresas financieras, especialmente en los bancos, es un factor crítico entender las deserciones y poder predecir dicho comportamiento. El objetivo principal de este trabajo es encontrar patrones en los datos que permitan identificar y comprender las deserciones, mediante la realización de diferentes iteraciones sobre los datos y utilizando las diferentes técnicas que se abordan en la especialidad de Analítica y Data Science de la Universidad de Antioquia. El proceso comienza con una primera iteración evaluando los datos a través de un modelo de regresión logística. A partir de ahí, iteraciones posteriores permiten evaluar modelos de aprendizaje automático en busca del modelo óptimo y mejores resultadosABSTRACT : In the modern business world, customer loyalty and retention have become essential and critical elements when defining strategies and policies that reduce customer defection to other markets and/or products. Losing customers is more costly than attracting new ones. The study of customer behavior, particularly their defection, has become an urgent necessity within the business sphere. In financial companies, especially banks, it is a critical factor to understand defections and be able to predict such behavior. The main objective of this work is to find patterns in the data that allow for the identification and understanding of defections, by carrying out different iterations on the data and using the different techniques addressed in the Analytics and Data Science specialization at the University of Antioquia. The process starts with a first iteration evaluating the data through a logistic regression model. From there, subsequent iterations allow for the evaluation of machine learning models in search of the optimal model and best results.EspecializaciónEspecialista en Analítica y Ciencia de Datos31application/pdfspaUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Especialización en Analítica y Ciencia de Datoshttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Predicción de retiro de clientes bancariosTesis/Trabajo de grado - Monografía - Especializaciónhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/draftAnálisis de datosData analysisAprendizaje automático (inteligencia artificial)Machine learningBancosBanks and bankingComportamiento del consumidorPerfilación del del consumidorhttp://vocabularies.unesco.org/thesaurus/concept2214https://github.com/jolual2747/bank-customer-churn-predictionPublicationORIGINALAlcocerJose_2023_CustomerChurnPrediction.pdfAlcocerJose_2023_CustomerChurnPrediction.pdfTrabajo de grado de especializaciónapplication/pdf768949https://bibliotecadigital.udea.edu.co/bitstreams/ae9322fd-4a82-47e1-835d-c0eb6e9c11f0/download70e3711e661e81155697fe82cb3f50bdMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/d2ea9b96-aa66-40d9-a5fe-67116f7229e1/downloadb88b088d9957e670ce3b3fbe2eedbc13MD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/d57cddf4-d88d-4cfe-8cf3-efa3f597c195/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADTEXTAlcocerJose_2023_CustomerChurnPrediction.pdf.txtAlcocerJose_2023_CustomerChurnPrediction.pdf.txtExtracted texttext/plain43172https://bibliotecadigital.udea.edu.co/bitstreams/2348fa62-7063-40bf-bd27-02c81e722284/download093d9df92f06d8840891fbbea3fca9faMD55falseAnonymousREADTHUMBNAILAlcocerJose_2023_CustomerChurnPrediction.pdf.jpgAlcocerJose_2023_CustomerChurnPrediction.pdf.jpgGenerated Thumbnailimage/jpeg6336https://bibliotecadigital.udea.edu.co/bitstreams/3891692c-256c-4019-9f6e-0a6a5d0e2223/download9ae67bdd50ce4e271c8c32d4750f9b2dMD56falseAnonymousREAD10495/35744oai:bibliotecadigital.udea.edu.co:10495/357442025-03-26 21:59:19.357https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
