Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
ABSTRACT: We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave...
- Autores:
-
Sanz Vicario, José Luis
Pérez Torres, Jhon Fredy
Moreno Polo, Germán
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/13129
- Acceso en línea:
- http://hdl.handle.net/10495/13129
- Palabra clave:
- Descomposición de Schmidt
Ondas expandidas
Bases no ortogonales
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_71655e49cd58fa926d728a69e9bbc7d8 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/13129 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets |
| title |
Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets |
| spellingShingle |
Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets Descomposición de Schmidt Ondas expandidas Bases no ortogonales |
| title_short |
Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets |
| title_full |
Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets |
| title_fullStr |
Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets |
| title_full_unstemmed |
Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets |
| title_sort |
Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets |
| dc.creator.fl_str_mv |
Sanz Vicario, José Luis Pérez Torres, Jhon Fredy Moreno Polo, Germán |
| dc.contributor.author.none.fl_str_mv |
Sanz Vicario, José Luis Pérez Torres, Jhon Fredy Moreno Polo, Germán |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Física Atómica y Molecular |
| dc.subject.proposal.spa.fl_str_mv |
Descomposición de Schmidt Ondas expandidas Bases no ortogonales |
| topic |
Descomposición de Schmidt Ondas expandidas Bases no ortogonales |
| description |
ABSTRACT: We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within themanifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes. |
| publishDate |
2017 |
| dc.date.issued.none.fl_str_mv |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2020-01-14T03:47:47Z |
| dc.date.available.none.fl_str_mv |
2020-01-14T03:47:47Z |
| dc.type.spa.fl_str_mv |
Articulo de investigación |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
| dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/lecture |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.identifier.citation.spa.fl_str_mv |
Sanz-Vicario, J. L., Pérez-Torres, J. F., & Moreno-Polo, G. (2017). Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets. Physical Review A, 96 (022503), 1-14. https://doi.org/10.1103/PhysRevA.96.022503 |
| dc.identifier.issn.none.fl_str_mv |
2469-9926 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/13129 |
| dc.identifier.doi.none.fl_str_mv |
10.1103/PhysRevA.96.022503 |
| dc.identifier.eissn.none.fl_str_mv |
2469-9934 |
| identifier_str_mv |
Sanz-Vicario, J. L., Pérez-Torres, J. F., & Moreno-Polo, G. (2017). Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets. Physical Review A, 96 (022503), 1-14. https://doi.org/10.1103/PhysRevA.96.022503 2469-9926 10.1103/PhysRevA.96.022503 2469-9934 |
| url |
http://hdl.handle.net/10495/13129 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Phys. Rev. D |
| dc.relation.citationissue.spa.fl_str_mv |
22503 |
| dc.relation.citationvolume.spa.fl_str_mv |
96 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Physical Review A |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
American Physical Society |
| dc.publisher.place.spa.fl_str_mv |
Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/8bf51076-a415-4931-95fc-339aeec421a1/download https://bibliotecadigital.udea.edu.co/bitstreams/0315c905-e562-4f5d-acc6-c72049e4e8f9/download https://bibliotecadigital.udea.edu.co/bitstreams/df677a4a-0856-49e5-9d59-ef2e98a6d002/download https://bibliotecadigital.udea.edu.co/bitstreams/0ddce2d5-23b1-40f2-9f23-ac99dbf595d5/download https://bibliotecadigital.udea.edu.co/bitstreams/4377478e-cf14-4a51-8621-7446ed04116c/download https://bibliotecadigital.udea.edu.co/bitstreams/39947bc4-19f8-41e8-9f3b-7da92bbf0b0d/download https://bibliotecadigital.udea.edu.co/bitstreams/95cc0313-6654-4665-accb-6b3c5790eb6a/download |
| bitstream.checksum.fl_str_mv |
1ea15907149d50dad93b387eaf1a2074 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 8a4605be74aa9ea9d79846c1fba20a33 34b4805ff9fdbaf93bee9cbf474be924 5255ece4cb5eb0fe2c38cd815666eef6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052486392020992 |
| spelling |
Sanz Vicario, José LuisPérez Torres, Jhon FredyMoreno Polo, GermánGrupo de Física Atómica y Molecular2020-01-14T03:47:47Z2020-01-14T03:47:47Z2017Sanz-Vicario, J. L., Pérez-Torres, J. F., & Moreno-Polo, G. (2017). Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets. Physical Review A, 96 (022503), 1-14. https://doi.org/10.1103/PhysRevA.96.0225032469-9926http://hdl.handle.net/10495/1312910.1103/PhysRevA.96.0225032469-9934ABSTRACT: We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within themanifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes.COL0008441application/pdfengAmerican Physical SocietyEstados Unidoshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis setsArticulo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_8544https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/version/c_71e4c1898caa6e32info:eu-repo/semantics/lectureDescomposición de SchmidtOndas expandidasBases no ortogonalesPhys. Rev. D2250396Physical Review APublicationORIGINALSanzJose_2017_ElectronicNuclearEntanglement.pdfSanzJose_2017_ElectronicNuclearEntanglement.pdfArticulo de investigaciónapplication/pdf4316615https://bibliotecadigital.udea.edu.co/bitstreams/8bf51076-a415-4931-95fc-339aeec421a1/download1ea15907149d50dad93b387eaf1a2074MD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/0315c905-e562-4f5d-acc6-c72049e4e8f9/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/df677a4a-0856-49e5-9d59-ef2e98a6d002/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/0ddce2d5-23b1-40f2-9f23-ac99dbf595d5/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/4377478e-cf14-4a51-8621-7446ed04116c/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTSanzJose_2017_ElectronicNuclearEntanglement.pdf.txtSanzJose_2017_ElectronicNuclearEntanglement.pdf.txtExtracted texttext/plain74501https://bibliotecadigital.udea.edu.co/bitstreams/39947bc4-19f8-41e8-9f3b-7da92bbf0b0d/download34b4805ff9fdbaf93bee9cbf474be924MD56falseAnonymousREADTHUMBNAILSanzJose_2017_ElectronicNuclearEntanglement.pdf.jpgSanzJose_2017_ElectronicNuclearEntanglement.pdf.jpgGenerated Thumbnailimage/jpeg16902https://bibliotecadigital.udea.edu.co/bitstreams/95cc0313-6654-4665-accb-6b3c5790eb6a/download5255ece4cb5eb0fe2c38cd815666eef6MD57falseAnonymousREAD10495/13129oai:bibliotecadigital.udea.edu.co:10495/131292025-03-26 23:06:26.821https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
