Does function fit structure? A ground truth for non-invasive neuroimaging

ABSTRACT: There are now a number of non-invasive methods to image human brain function in-vivo. However, the accuracy of these images remains unknown and can currently only be estimated through the use of invasive recordings to generate a functional ground truth. Neuronal activity follows grey matte...

Full description

Autores:
López Hincapié, José David
Stevenson, Claire M.
Brookes, Matthew J.
Troebinger, Luzia
Mattout, Jérémie
Penny, Will D.
Morris, Peter Gordon
Hillebrand, Arjan
Henson, Richard N.
Barnes, Gareth Robert
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/41655
Acceso en línea:
https://hdl.handle.net/10495/41655
Palabra clave:
Algoritmos
Algorithms
Modelos Neurológicos
Models, Neurological
Mapeo Encefálico
Brain Mapping
Simulación por Computador
Computer Simulation
Magnetoencefalografía
Magnetoencephalography
Modelos Neurológicos
Models, Neurological
Modelos Anatómicos
Models, Anatomic
Sustancia Gris
Gray Matter
Reproducibilidad de los Resultados
Reproducibility of Results
Sensibilidad y Especificidad
Sensitivity and Specificity
https://id.nlm.nih.gov/mesh/D000465
https://id.nlm.nih.gov/mesh/D008959
https://id.nlm.nih.gov/mesh/D001931
https://id.nlm.nih.gov/mesh/D003198
https://id.nlm.nih.gov/mesh/D015225
https://id.nlm.nih.gov/mesh/D008959
https://id.nlm.nih.gov/mesh/D008953
https://id.nlm.nih.gov/mesh/D066128
https://id.nlm.nih.gov/mesh/D015203
https://id.nlm.nih.gov/mesh/D012680
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
Description
Summary:ABSTRACT: There are now a number of non-invasive methods to image human brain function in-vivo. However, the accuracy of these images remains unknown and can currently only be estimated through the use of invasive recordings to generate a functional ground truth. Neuronal activity follows grey matter structure and accurate estimates of neuronal activity will have stronger support from accurate generative models of anatomy. Here we introduce a general framework that, for the first time, enables the spatial distortion of a functional brain image to be estimated empirically. We use a spherical harmonic decomposition to modulate each cortical hemisphere from its original form towards progressively simpler structures, ending in an ellipsoid. Functional estimates that are not supported by the simpler cortical structures have less inherent spatial distortion. This method allows us to compare directly between magnetoencephalography (MEG) source reconstructions based upon different assumption sets without recourse to functional ground truth.