Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem
ABSTRACT: In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilb...
- Autores:
-
Afuwape Afuwape, Anthony
Balla, M. Y.
Udo-utun, Xavier
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2012
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/25444
- Acceso en línea:
- http://hdl.handle.net/10495/25444
- Palabra clave:
- Ecuaciones de Volterra
Volterra equations
Espacio de Hilbert
Hilbert space
Espacio de Banach
Banach spaces
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_70a429a193682e927aef25191b8081e1 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/25444 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem |
| title |
Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem |
| spellingShingle |
Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem Ecuaciones de Volterra Volterra equations Espacio de Hilbert Hilbert space Espacio de Banach Banach spaces |
| title_short |
Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem |
| title_full |
Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem |
| title_fullStr |
Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem |
| title_full_unstemmed |
Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem |
| title_sort |
Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem |
| dc.creator.fl_str_mv |
Afuwape Afuwape, Anthony Balla, M. Y. Udo-utun, Xavier |
| dc.contributor.author.none.fl_str_mv |
Afuwape Afuwape, Anthony Balla, M. Y. Udo-utun, Xavier |
| dc.contributor.researchgroup.spa.fl_str_mv |
Modelación con Ecuaciones Diferenciales |
| dc.subject.lemb.none.fl_str_mv |
Ecuaciones de Volterra Volterra equations Espacio de Hilbert Hilbert space Espacio de Banach Banach spaces |
| topic |
Ecuaciones de Volterra Volterra equations Espacio de Hilbert Hilbert space Espacio de Banach Banach spaces |
| description |
ABSTRACT: In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilbert space L2[0, ∞)). However applying Osilike-Akuchu[10] theorem and recent results (in Hilbert space) of Igbokwe and Udoutun[8] we formulate conditions for finding approximate cycles of the second kind (in the Hilbert space W2,20 [0, ∞)) to this problem given in the form x′′′ + ax′′ + g(x′) + φ(x) = 0. |
| publishDate |
2012 |
| dc.date.issued.none.fl_str_mv |
2012 |
| dc.date.accessioned.none.fl_str_mv |
2022-01-21T14:38:47Z |
| dc.date.available.none.fl_str_mv |
2022-01-21T14:38:47Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
1224-1784 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/25444 |
| dc.identifier.doi.none.fl_str_mv |
10.2478/v10309-012-0001-z |
| dc.identifier.eissn.none.fl_str_mv |
1844-0835 |
| identifier_str_mv |
1224-1784 10.2478/v10309-012-0001-z 1844-0835 |
| url |
http://hdl.handle.net/10495/25444 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
14 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.spa.fl_str_mv |
5 |
| dc.relation.citationvolume.spa.fl_str_mv |
20 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
10 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universitatea „Ovidius” din Constanța |
| dc.publisher.place.spa.fl_str_mv |
Constanza, Rumanía |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/76cdbddc-89a3-4345-b4ee-f0fbf024f3b5/download https://bibliotecadigital.udea.edu.co/bitstreams/c062b97a-f4ad-4a73-aabc-76a514e37d55/download https://bibliotecadigital.udea.edu.co/bitstreams/e9b5621a-3d3b-47d0-a1bf-2957b4cdc9ca/download https://bibliotecadigital.udea.edu.co/bitstreams/502e5af6-0f78-4a9b-8bb8-d034a6a62b6d/download https://bibliotecadigital.udea.edu.co/bitstreams/2d07a42f-7a62-4d0e-8208-b99fe332d93f/download |
| bitstream.checksum.fl_str_mv |
dd7cc11087a2e5c8c7012e0a00ff21c4 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 d58e39fdaa65dcb7cfd4a49ea201009c c1cd02ef6af95d3df855446cfe2c2c18 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052279479664640 |
| spelling |
Afuwape Afuwape, AnthonyBalla, M. Y.Udo-utun, XavierModelación con Ecuaciones Diferenciales2022-01-21T14:38:47Z2022-01-21T14:38:47Z20121224-1784http://hdl.handle.net/10495/2544410.2478/v10309-012-0001-z1844-0835ABSTRACT: In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilbert space L2[0, ∞)). However applying Osilike-Akuchu[10] theorem and recent results (in Hilbert space) of Igbokwe and Udoutun[8] we formulate conditions for finding approximate cycles of the second kind (in the Hilbert space W2,20 [0, ∞)) to this problem given in the form x′′′ + ax′′ + g(x′) + φ(x) = 0.COL002436510application/pdfengUniversitatea „Ovidius” din ConstanțaConstanza, Rumaníahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo ProblemArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEcuaciones de VolterraVolterra equationsEspacio de HilbertHilbert spaceEspacio de BanachBanach spaces141520Analele Stiintifice ale Universitatii Ovidius Constanta, Seria MatematicaPublicationORIGINALUdoutunXavier_2012_ApproximateCyclesSecond.pdfUdoutunXavier_2012_ApproximateCyclesSecond.pdfArtículo de investigaciónapplication/pdf120301https://bibliotecadigital.udea.edu.co/bitstreams/76cdbddc-89a3-4345-b4ee-f0fbf024f3b5/downloaddd7cc11087a2e5c8c7012e0a00ff21c4MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/c062b97a-f4ad-4a73-aabc-76a514e37d55/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/e9b5621a-3d3b-47d0-a1bf-2957b4cdc9ca/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTUdoutunXavier_2012_ApproximateCyclesSecond.pdf.txtUdoutunXavier_2012_ApproximateCyclesSecond.pdf.txtExtracted texttext/plain16134https://bibliotecadigital.udea.edu.co/bitstreams/502e5af6-0f78-4a9b-8bb8-d034a6a62b6d/downloadd58e39fdaa65dcb7cfd4a49ea201009cMD54falseAnonymousREADTHUMBNAILUdoutunXavier_2012_ApproximateCyclesSecond.pdf.jpgUdoutunXavier_2012_ApproximateCyclesSecond.pdf.jpgGenerated Thumbnailimage/jpeg8119https://bibliotecadigital.udea.edu.co/bitstreams/2d07a42f-7a62-4d0e-8208-b99fe332d93f/downloadc1cd02ef6af95d3df855446cfe2c2c18MD55falseAnonymousREAD10495/25444oai:bibliotecadigital.udea.edu.co:10495/254442025-03-26 19:47:48.758https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
