Assessment of oropharyngeal dysphagia using multimodal biosignals
ABSTRACT: Dysphagia is a swallowing impairment that affects the food, liquid, or saliva transit from the mouth to the stomach. Dysphagia leads to malnutrition, dehydration, and aspiration of the bolus into the respiratory system, which can lead to pneumonia with subsequent death. Dysphagia is produc...
- Autores:
-
Roldán Vasco, Sebastián
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/36438
- Acceso en línea:
- https://hdl.handle.net/10495/36438
- Palabra clave:
- Trastornos de deglución
Deglutition Disorders
Deglución
Deglutition
Machine learning
Aprendizaje Automático
Procesamiento de señales
Signal processing
Dysphagia
Biomedical Signal Processing
Swallowing
- Rights
- embargoedAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_6e55a9291cccca20e5f88f6e4de5b802 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/36438 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Assessment of oropharyngeal dysphagia using multimodal biosignals |
| title |
Assessment of oropharyngeal dysphagia using multimodal biosignals |
| spellingShingle |
Assessment of oropharyngeal dysphagia using multimodal biosignals Trastornos de deglución Deglutition Disorders Deglución Deglutition Machine learning Aprendizaje Automático Procesamiento de señales Signal processing Dysphagia Biomedical Signal Processing Swallowing |
| title_short |
Assessment of oropharyngeal dysphagia using multimodal biosignals |
| title_full |
Assessment of oropharyngeal dysphagia using multimodal biosignals |
| title_fullStr |
Assessment of oropharyngeal dysphagia using multimodal biosignals |
| title_full_unstemmed |
Assessment of oropharyngeal dysphagia using multimodal biosignals |
| title_sort |
Assessment of oropharyngeal dysphagia using multimodal biosignals |
| dc.creator.fl_str_mv |
Roldán Vasco, Sebastián |
| dc.contributor.advisor.none.fl_str_mv |
Orozco Arroyave, Juan Rafael Orozco Duque, Andrés Felipe |
| dc.contributor.author.none.fl_str_mv |
Roldán Vasco, Sebastián |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Telecomunicaciones Aplicadas (GITA) |
| dc.subject.decs.none.fl_str_mv |
Trastornos de deglución Deglutition Disorders Deglución Deglutition Machine learning Aprendizaje Automático |
| topic |
Trastornos de deglución Deglutition Disorders Deglución Deglutition Machine learning Aprendizaje Automático Procesamiento de señales Signal processing Dysphagia Biomedical Signal Processing Swallowing |
| dc.subject.lemb.none.fl_str_mv |
Procesamiento de señales Signal processing |
| dc.subject.proposal.spa.fl_str_mv |
Dysphagia Biomedical Signal Processing Swallowing |
| description |
ABSTRACT: Dysphagia is a swallowing impairment that affects the food, liquid, or saliva transit from the mouth to the stomach. Dysphagia leads to malnutrition, dehydration, and aspiration of the bolus into the respiratory system, which can lead to pneumonia with subsequent death. Dysphagia is produced by a set of neurogenic and neuromuscular conditions with variable incidence and prevalence. This condition is under-recognized and under-diagnosed. However, physical, economic, social, and psychological burdens have been clearly identified. The clinically accepted methods for dysphagia diagnosis and follow-up are invasive, uncomfortable, expensive, and experience-dependent. Furthermore, the reliability of some methods is still discussed. In this way, biosignals-based approaches that try to solve the aforementioned problems have been proposed, but no conclusive and hardly reproducible results have been achieved. Otherwise, such strategies generally ignore some physical aspects of the swallowing process. Therefore, this work explored non-invasive strategies to objectively assess dysphagia. To evaluate different physical aspects of the swallowing process, a multi-modal asynchronous analysis was performed with three biosignals: surface electromyography, accelerometry-based cervical auscultation, and speech. Such biosignals contributed to analyzing the swallowing-related phenomena in electrophysiological, mechanical, and acoustic dimensions. This thesis was focused on understanding oral and pharyngeal phases of the swallowing process by the use of the aforementioned signals. The following methodological steps were proposed to develop the dysphagia assessment scheme: 1) design of an acquisition protocol for the three biosignals in patients with dysphagia and healthy controls; 2) characterization of such biosignals in different mathematical domains, leading to the proposal of interpretable biomarkers; 3) construction of representation spaces and modeling of the swallowing patterns; and 4) evaluation of the multi-modal approach as a reliable method for swallowing assessment. All signals demonstrated their suitability for dysphagia screening by themselves, but bi- and tri-modal scenarios with Support Vector Machines, Extreme Gradient Boosting, k-Nearest Neighbors, and Gated Multimodal Units outperformed the uni-modal classification results. Specific configurations retrieved outstanding results, i.e. all performance measures obtained values ≥ 0,95. This thesis contributes to reducing the knowledge gap about swallowing-related phenomena and alterations from non-invasive and multi-modal points of view, with high potential to transfer and implement in clinical practice. It also contributes to objectively assessing dysphagia in the consulting room, helping with the diagnosis, follow-up, and rehabilitation of patients with dysphagia. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-08-29T19:39:55Z |
| dc.date.available.none.fl_str_mv |
2023-08-29T19:39:55Z |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Doctorado |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/36438 |
| url |
https://hdl.handle.net/10495/36438 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_f1cf |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.extent.spa.fl_str_mv |
193 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computación |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/1204249b-4095-4190-814e-89cd15e101ff/download https://bibliotecadigital.udea.edu.co/bitstreams/e9d57762-e91c-457b-96f6-6d4baa65501a/download https://bibliotecadigital.udea.edu.co/bitstreams/9a32f837-6b84-4bb0-9d4f-fb84555356d2/download https://bibliotecadigital.udea.edu.co/bitstreams/a7ff9d1c-f72f-40cf-aeaf-5f47f7a8a861/download https://bibliotecadigital.udea.edu.co/bitstreams/72f912d2-398c-422d-a261-cb36d4c27f20/download |
| bitstream.checksum.fl_str_mv |
fd0548b8694973befb689f3e7a707f1d 8a4605be74aa9ea9d79846c1fba20a33 ac57781b0775035d2297823269ac3b42 3207eadb5818ff3ac1ba498f2b373f75 d77b8b8211ff79469bcec5ff0e4b7b56 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052310951624704 |
| spelling |
Orozco Arroyave, Juan RafaelOrozco Duque, Andrés FelipeRoldán Vasco, SebastiánGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)2023-08-29T19:39:55Z2023-08-29T19:39:55Z2023https://hdl.handle.net/10495/36438ABSTRACT: Dysphagia is a swallowing impairment that affects the food, liquid, or saliva transit from the mouth to the stomach. Dysphagia leads to malnutrition, dehydration, and aspiration of the bolus into the respiratory system, which can lead to pneumonia with subsequent death. Dysphagia is produced by a set of neurogenic and neuromuscular conditions with variable incidence and prevalence. This condition is under-recognized and under-diagnosed. However, physical, economic, social, and psychological burdens have been clearly identified. The clinically accepted methods for dysphagia diagnosis and follow-up are invasive, uncomfortable, expensive, and experience-dependent. Furthermore, the reliability of some methods is still discussed. In this way, biosignals-based approaches that try to solve the aforementioned problems have been proposed, but no conclusive and hardly reproducible results have been achieved. Otherwise, such strategies generally ignore some physical aspects of the swallowing process. Therefore, this work explored non-invasive strategies to objectively assess dysphagia. To evaluate different physical aspects of the swallowing process, a multi-modal asynchronous analysis was performed with three biosignals: surface electromyography, accelerometry-based cervical auscultation, and speech. Such biosignals contributed to analyzing the swallowing-related phenomena in electrophysiological, mechanical, and acoustic dimensions. This thesis was focused on understanding oral and pharyngeal phases of the swallowing process by the use of the aforementioned signals. The following methodological steps were proposed to develop the dysphagia assessment scheme: 1) design of an acquisition protocol for the three biosignals in patients with dysphagia and healthy controls; 2) characterization of such biosignals in different mathematical domains, leading to the proposal of interpretable biomarkers; 3) construction of representation spaces and modeling of the swallowing patterns; and 4) evaluation of the multi-modal approach as a reliable method for swallowing assessment. All signals demonstrated their suitability for dysphagia screening by themselves, but bi- and tri-modal scenarios with Support Vector Machines, Extreme Gradient Boosting, k-Nearest Neighbors, and Gated Multimodal Units outperformed the uni-modal classification results. Specific configurations retrieved outstanding results, i.e. all performance measures obtained values ≥ 0,95. This thesis contributes to reducing the knowledge gap about swallowing-related phenomena and alterations from non-invasive and multi-modal points of view, with high potential to transfer and implement in clinical practice. It also contributes to objectively assessing dysphagia in the consulting room, helping with the diagnosis, follow-up, and rehabilitation of patients with dysphagia.TESIS CON DISTINCIÓN: Summa Cum LaudeDoctoradoDoctor en Ingeniería Electrónica y de Computación193application/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computaciónhttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAssessment of oropharyngeal dysphagia using multimodal biosignalsTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftTrastornos de degluciónDeglutition DisordersDegluciónDeglutitionMachine learningAprendizaje AutomáticoProcesamiento de señalesSignal processingDysphagiaBiomedical Signal ProcessingSwallowingPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8712https://bibliotecadigital.udea.edu.co/bitstreams/1204249b-4095-4190-814e-89cd15e101ff/downloadfd0548b8694973befb689f3e7a707f1dMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/e9d57762-e91c-457b-96f6-6d4baa65501a/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADORIGINALRoldanSebastian_2023_AssessmentOropharyngealDysphagiaRoldanSebastian_2023_AssessmentOropharyngealDysphagiaTesis doctoralapplication/pdf12561654https://bibliotecadigital.udea.edu.co/bitstreams/9a32f837-6b84-4bb0-9d4f-fb84555356d2/downloadac57781b0775035d2297823269ac3b42MD51trueAnonymousREAD2024-12-31TEXTRoldanSebastian_2023_AssessmentOropharyngealDysphagia.txtRoldanSebastian_2023_AssessmentOropharyngealDysphagia.txtExtracted texttext/plain101015https://bibliotecadigital.udea.edu.co/bitstreams/a7ff9d1c-f72f-40cf-aeaf-5f47f7a8a861/download3207eadb5818ff3ac1ba498f2b373f75MD56falseAnonymousREAD2024-12-31THUMBNAILRoldanSebastian_2023_AssessmentOropharyngealDysphagia.jpgRoldanSebastian_2023_AssessmentOropharyngealDysphagia.jpgGenerated Thumbnailimage/jpeg6099https://bibliotecadigital.udea.edu.co/bitstreams/72f912d2-398c-422d-a261-cb36d4c27f20/downloadd77b8b8211ff79469bcec5ff0e4b7b56MD57falseAnonymousREAD2024-12-3110495/36438oai:bibliotecadigital.udea.edu.co:10495/364382025-03-26 20:20:21.131https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
