Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech
ABSTRACT: This paper proposes the application of measures based on nonlinear dynamics for emotional speech characterization. Measures such as mutual information, dimension correlation, entropy correlation, Shannon’s entropy, Lempel–Ziv complexity and Hurst exponent are extracted from the samples of...
- Autores:
-
Orozco Arroyave, Juan Rafael
Henríquez Rodríguez, Patricia
Alonso Hernández, Jesús Bernardino
Ferrer Ballester, Miguel Ángel
Travieso González, Carlos Manuel
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2013
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35812
- Acceso en línea:
- https://hdl.handle.net/10495/35812
- Palabra clave:
- Nonlinear Dynamics
Dinámicas no Lineales
Expressed Emotion
Emoción Expresada
Expressed Emotion
Neural networks
Redes de neuronas
http://aims.fao.org/aos/agrovoc/c_37467
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_6d93b54e404b6d89aeb8fad62e0017cd |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/35812 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech |
| title |
Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech |
| spellingShingle |
Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech Nonlinear Dynamics Dinámicas no Lineales Expressed Emotion Emoción Expresada Expressed Emotion Neural networks Redes de neuronas http://aims.fao.org/aos/agrovoc/c_37467 |
| title_short |
Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech |
| title_full |
Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech |
| title_fullStr |
Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech |
| title_full_unstemmed |
Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech |
| title_sort |
Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech |
| dc.creator.fl_str_mv |
Orozco Arroyave, Juan Rafael Henríquez Rodríguez, Patricia Alonso Hernández, Jesús Bernardino Ferrer Ballester, Miguel Ángel Travieso González, Carlos Manuel |
| dc.contributor.author.none.fl_str_mv |
Orozco Arroyave, Juan Rafael Henríquez Rodríguez, Patricia Alonso Hernández, Jesús Bernardino Ferrer Ballester, Miguel Ángel Travieso González, Carlos Manuel |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Telecomunicaciones Aplicadas (GITA) |
| dc.subject.decs.none.fl_str_mv |
Nonlinear Dynamics Dinámicas no Lineales Expressed Emotion Emoción Expresada Expressed Emotion |
| topic |
Nonlinear Dynamics Dinámicas no Lineales Expressed Emotion Emoción Expresada Expressed Emotion Neural networks Redes de neuronas http://aims.fao.org/aos/agrovoc/c_37467 |
| dc.subject.agrovoc.none.fl_str_mv |
Neural networks Redes de neuronas |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_37467 |
| description |
ABSTRACT: This paper proposes the application of measures based on nonlinear dynamics for emotional speech characterization. Measures such as mutual information, dimension correlation, entropy correlation, Shannon’s entropy, Lempel–Ziv complexity and Hurst exponent are extracted from the samples of a database of emotional speech. Then, summary statistics such as mean, standard deviation, skewness and kurtosis are applied on the extracted measures. Experiments were conducted on the Berlin emotional speech database for a three-class problem (neutral, fear and anger as emotional states). Feature selection is accomplished and a methodology is proposed to find the best features. In order to evaluate the discrimination ability of the selected features, a neural network classifier is used. The global success rate is 93.78 ± 3.18 %. |
| publishDate |
2013 |
| dc.date.issued.none.fl_str_mv |
2013 |
| dc.date.accessioned.none.fl_str_mv |
2023-07-08T01:43:51Z |
| dc.date.available.none.fl_str_mv |
2023-07-08T01:43:51Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
P. Henríquez Rodríguez, J. B. Alonso Hernández, M. A. Ferrer Ballester, C. M. Travieso González, and J. R. Orozco-Arroyave, “Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech,” Cognit. Comput., vol. 5, no. 4, pp. 517–525, 2013, doi: 10.1007/s12559-012-9157-0. |
| dc.identifier.issn.none.fl_str_mv |
1866-9956 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/35812 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/s12559-012-9157-0 |
| dc.identifier.eissn.none.fl_str_mv |
1866-9964 |
| identifier_str_mv |
P. Henríquez Rodríguez, J. B. Alonso Hernández, M. A. Ferrer Ballester, C. M. Travieso González, and J. R. Orozco-Arroyave, “Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech,” Cognit. Comput., vol. 5, no. 4, pp. 517–525, 2013, doi: 10.1007/s12559-012-9157-0. 1866-9956 10.1007/s12559-012-9157-0 1866-9964 |
| url |
https://hdl.handle.net/10495/35812 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Cognit. Comput. |
| dc.relation.citationendpage.spa.fl_str_mv |
525 |
| dc.relation.citationstartpage.spa.fl_str_mv |
517 |
| dc.relation.citationvolume.spa.fl_str_mv |
5 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Cognitive Computation |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
9 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Springer |
| dc.publisher.place.spa.fl_str_mv |
Nueva York, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/66a1f5b5-0ad3-4302-946e-378a363332c6/download https://bibliotecadigital.udea.edu.co/bitstreams/25532618-875a-49ae-99d3-a73970617ad0/download https://bibliotecadigital.udea.edu.co/bitstreams/6adfcb73-e126-4cde-951b-69ee1ae33855/download https://bibliotecadigital.udea.edu.co/bitstreams/3416662b-bbcc-4cc2-ba9d-72d2a004f7a1/download https://bibliotecadigital.udea.edu.co/bitstreams/c86f33c9-8fba-4c7e-9c81-faad0303b8bd/download |
| bitstream.checksum.fl_str_mv |
b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 585bd5b40672d7b831ffe32f564b606a f17c0f43ff2b20b2236370a79b9cee76 b50e00c8198e1ea152546232973546de |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052242486951936 |
| spelling |
Orozco Arroyave, Juan RafaelHenríquez Rodríguez, PatriciaAlonso Hernández, Jesús BernardinoFerrer Ballester, Miguel ÁngelTravieso González, Carlos ManuelGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)2023-07-08T01:43:51Z2023-07-08T01:43:51Z2013P. Henríquez Rodríguez, J. B. Alonso Hernández, M. A. Ferrer Ballester, C. M. Travieso González, and J. R. Orozco-Arroyave, “Global Selection of Features for Nonlinear Dynamics Characterization of Emotional Speech,” Cognit. Comput., vol. 5, no. 4, pp. 517–525, 2013, doi: 10.1007/s12559-012-9157-0.1866-9956https://hdl.handle.net/10495/3581210.1007/s12559-012-9157-01866-9964ABSTRACT: This paper proposes the application of measures based on nonlinear dynamics for emotional speech characterization. Measures such as mutual information, dimension correlation, entropy correlation, Shannon’s entropy, Lempel–Ziv complexity and Hurst exponent are extracted from the samples of a database of emotional speech. Then, summary statistics such as mean, standard deviation, skewness and kurtosis are applied on the extracted measures. Experiments were conducted on the Berlin emotional speech database for a three-class problem (neutral, fear and anger as emotional states). Feature selection is accomplished and a methodology is proposed to find the best features. In order to evaluate the discrimination ability of the selected features, a neural network classifier is used. The global success rate is 93.78 ± 3.18 %.COL00444489application/pdfengSpringerNueva York, Estados Unidoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Global Selection of Features for Nonlinear Dynamics Characterization of Emotional SpeechArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionNonlinear DynamicsDinámicas no LinealesExpressed EmotionEmoción ExpresadaExpressed EmotionNeural networksRedes de neuronashttp://aims.fao.org/aos/agrovoc/c_37467Cognit. Comput.5255175Cognitive ComputationPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/66a1f5b5-0ad3-4302-946e-378a363332c6/downloadb88b088d9957e670ce3b3fbe2eedbc13MD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/25532618-875a-49ae-99d3-a73970617ad0/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADORIGINALGlobal Selection of Features for Nonlinear Dynamics.pdfGlobal Selection of Features for Nonlinear Dynamics.pdfArtículo de investigaciónapplication/pdf426004https://bibliotecadigital.udea.edu.co/bitstreams/6adfcb73-e126-4cde-951b-69ee1ae33855/download585bd5b40672d7b831ffe32f564b606aMD51trueAnonymousREADTEXTGlobal Selection of Features for Nonlinear Dynamics.pdf.txtGlobal Selection of Features for Nonlinear Dynamics.pdf.txtExtracted texttext/plain39713https://bibliotecadigital.udea.edu.co/bitstreams/3416662b-bbcc-4cc2-ba9d-72d2a004f7a1/downloadf17c0f43ff2b20b2236370a79b9cee76MD56falseAnonymousREADTHUMBNAILGlobal Selection of Features for Nonlinear Dynamics.pdf.jpgGlobal Selection of Features for Nonlinear Dynamics.pdf.jpgGenerated Thumbnailimage/jpeg13739https://bibliotecadigital.udea.edu.co/bitstreams/c86f33c9-8fba-4c7e-9c81-faad0303b8bd/downloadb50e00c8198e1ea152546232973546deMD57falseAnonymousREAD10495/35812oai:bibliotecadigital.udea.edu.co:10495/358122025-03-26 19:14:06.698http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
