Caracterización lingüística de las unidades terminológicas para determinar el nivel de especialización textual

La presente tesis tiene como objetivo el análisis de unidades terminológicas para comprender su comportamiento en textos de diferente nivel de especialización y así sustentar su inclusión o exclusión en un índice de especialización textual. En primera instancia, se compila el corpus de referencia Va...

Full description

Autores:
Vásquez Giraldo, David
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45761
Acceso en línea:
https://hdl.handle.net/10495/45761
Palabra clave:
Corpus lingüístico
Corpora (Linguistics)
Linguistic analysis (linguistics)
Terminología
Terminology
Análisis lingüístico
Discurso especializado
Unidad terminológica
Especialización textual
Rights
embargoedAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_6d1432103f68e58d4aabf085c05f8300
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45761
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Caracterización lingüística de las unidades terminológicas para determinar el nivel de especialización textual
title Caracterización lingüística de las unidades terminológicas para determinar el nivel de especialización textual
spellingShingle Caracterización lingüística de las unidades terminológicas para determinar el nivel de especialización textual
Corpus lingüístico
Corpora (Linguistics)
Linguistic analysis (linguistics)
Terminología
Terminology
Análisis lingüístico
Discurso especializado
Unidad terminológica
Especialización textual
title_short Caracterización lingüística de las unidades terminológicas para determinar el nivel de especialización textual
title_full Caracterización lingüística de las unidades terminológicas para determinar el nivel de especialización textual
title_fullStr Caracterización lingüística de las unidades terminológicas para determinar el nivel de especialización textual
title_full_unstemmed Caracterización lingüística de las unidades terminológicas para determinar el nivel de especialización textual
title_sort Caracterización lingüística de las unidades terminológicas para determinar el nivel de especialización textual
dc.creator.fl_str_mv Vásquez Giraldo, David
dc.contributor.advisor.none.fl_str_mv Quiroz Herrera, Gabriel Ángel
dc.contributor.author.none.fl_str_mv Vásquez Giraldo, David
dc.contributor.researchgroup.none.fl_str_mv Grupo de Investigación en Terminología y Traducción (GITT)
dc.contributor.jury.none.fl_str_mv Giraldo Ortiz, John Jairo
Vargas Sierra, Chelo
Rodríguez Tapia, Sergio
dc.subject.lem.none.fl_str_mv Corpus lingüístico
Corpora (Linguistics)
topic Corpus lingüístico
Corpora (Linguistics)
Linguistic analysis (linguistics)
Terminología
Terminology
Análisis lingüístico
Discurso especializado
Unidad terminológica
Especialización textual
dc.subject.lemb.none.fl_str_mv Linguistic analysis (linguistics)
Terminología
Terminology
Análisis lingüístico
dc.subject.proposal.spa.fl_str_mv Discurso especializado
Unidad terminológica
Especialización textual
description La presente tesis tiene como objetivo el análisis de unidades terminológicas para comprender su comportamiento en textos de diferente nivel de especialización y así sustentar su inclusión o exclusión en un índice de especialización textual. En primera instancia, se compila el corpus de referencia VaTeVe de 1 680 000 tokens, conformado con dos corpus principales en las áreas de medicina (841 009 tokens) y medio ambiente (840 592 tokens), y tres subcorpus en niveles alto, medio y bajo de especialización. De igual manera, se hace un muestreo a través de dos estudios piloto en el área de oncología para un mayor control de las variables. En segundo lugar, se realiza la extracción de unidades a través del programa de extracción terminológica TermostatWeb 3.0 y se procede con la limpieza, adecuación y validación de datos por medio de herramientas informáticas y expertos. Se analizaron adjetivos terminológicos, nombres terminológicos, adverbios terminológicos, verbos terminológicos, formas abreviadas y SNEE en una muestra de tres textos en 8 experimentos, así se tuvo un total de 24 textos para el muestreo en oncología. En esta etapa se excluyó el área de medio ambiente por motivos de alcance de la investigación. Cada uno de los textos se eligió del corpus de referencia y se realizó un corte a 2500 tokens, es decir que cada experimento tenía 7500 tokens distribuidos en los tres textos: texto nivel alto, nivel medio y nivel bajo. Las clases textuales se seleccionaron de modo que reflejaran con precisión el nivel de especialización y para ello la selección de los textos se dio desde un punto de vista pragmático pensando principalmente en el registro y tenor funcional (relación entre los interlocutores). Los géneros fueron entonces artículos de investigación formato InMRyD en el nivel alto, GPC de estrategia PICO y manuales en el medio; y guías para pacientes y notas periodísticas en el nivel bajo. En tercer lugar, se desarrollan principalmente dos tipos de análisis: un análisis lingüístico y un análisis estadístico tanto descriptivo como inferencial. El análisis lingüístico se lleva a cabo a través de la caracterización de las unidades previamente seleccionadas como parametrizables en el índice de especialización textual y los posibles contextos de uso que permiten identificar su estatus terminológico y las diferencias sintáctico-semánticas en tres niveles de especialización. Por medio de análisis estadístico se establece cuáles UT o USE poseen diferencias estadísticamente significativas en los niveles alto, medio y bajo de especialización en el dominio de la oncología. Los análisis y comparativas lingüísticas entre las unidades permiten saber si la unidad es o no discriminatoria en el nivel de especialización y se apoyan de dos análisis estadísticos, uno descriptivo y otro inferencial. El modelo para análisis inferencial se fundamentó en una regresión lineal para comprobar la correlación existente entre las variables de las UT y el nivel de especialización textual. A partir de los análisis planteados, se concluye que no todas las unidades pueden ser incluidas en el índice vertical de especialización textual (INVEST), además, se establecen las unidades que pueden ser fácilmente analizadas en muestras pequeñas y las unidades que deben ser estudiadas en corpus de mayor tamaño. Igualmente, se bridan recomendaciones para estudios subsecuentes en la temática trabajada en esta tesis.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-04-29T20:57:43Z
dc.date.available.none.fl_str_mv 2026-10-10
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TD
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45761
url https://hdl.handle.net/10495/45761
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 370 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Doctorado en Lingüística
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Comunicaciones y Filología
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/e8fac70a-3e2d-4a90-a444-891e9c22ebd0/download
https://bibliotecadigital.udea.edu.co/bitstreams/e18b09b7-c129-471d-9ddb-ae4e944cf0bc/download
https://bibliotecadigital.udea.edu.co/bitstreams/68cd74a6-6131-4b5e-9618-bbf59f266db8/download
https://bibliotecadigital.udea.edu.co/bitstreams/1f2c08d5-8f62-414f-b5eb-1bc47937b49c/download
https://bibliotecadigital.udea.edu.co/bitstreams/c03856be-90b6-4934-9bcc-bc780108c127/download
https://bibliotecadigital.udea.edu.co/bitstreams/a6df1ded-ec68-4111-b5dd-a2056b267413/download
https://bibliotecadigital.udea.edu.co/bitstreams/04dc2968-db03-4e48-bfb4-cd5bf612462f/download
https://bibliotecadigital.udea.edu.co/bitstreams/6d21db00-5038-4732-a0a6-6e7b54570687/download
https://bibliotecadigital.udea.edu.co/bitstreams/34fbedee-c8b7-4489-87f2-c38e6951e2e0/download
bitstream.checksum.fl_str_mv e8557436d43e6873dbfe2a17543c8775
b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
66746908b636b9c8f0e4a25a46bfcf6d
80bcb8b492c1cfc912119572d26989df
80bcb8b492c1cfc912119572d26989df
461774d9a8ee88f45066b0a2e6a67304
461774d9a8ee88f45066b0a2e6a67304
461774d9a8ee88f45066b0a2e6a67304
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052626684149760
spelling Quiroz Herrera, Gabriel ÁngelVásquez Giraldo, DavidGrupo de Investigación en Terminología y Traducción (GITT)Giraldo Ortiz, John JairoVargas Sierra, CheloRodríguez Tapia, Sergio2025-04-29T20:57:43Z2026-10-102024https://hdl.handle.net/10495/45761La presente tesis tiene como objetivo el análisis de unidades terminológicas para comprender su comportamiento en textos de diferente nivel de especialización y así sustentar su inclusión o exclusión en un índice de especialización textual. En primera instancia, se compila el corpus de referencia VaTeVe de 1 680 000 tokens, conformado con dos corpus principales en las áreas de medicina (841 009 tokens) y medio ambiente (840 592 tokens), y tres subcorpus en niveles alto, medio y bajo de especialización. De igual manera, se hace un muestreo a través de dos estudios piloto en el área de oncología para un mayor control de las variables. En segundo lugar, se realiza la extracción de unidades a través del programa de extracción terminológica TermostatWeb 3.0 y se procede con la limpieza, adecuación y validación de datos por medio de herramientas informáticas y expertos. Se analizaron adjetivos terminológicos, nombres terminológicos, adverbios terminológicos, verbos terminológicos, formas abreviadas y SNEE en una muestra de tres textos en 8 experimentos, así se tuvo un total de 24 textos para el muestreo en oncología. En esta etapa se excluyó el área de medio ambiente por motivos de alcance de la investigación. Cada uno de los textos se eligió del corpus de referencia y se realizó un corte a 2500 tokens, es decir que cada experimento tenía 7500 tokens distribuidos en los tres textos: texto nivel alto, nivel medio y nivel bajo. Las clases textuales se seleccionaron de modo que reflejaran con precisión el nivel de especialización y para ello la selección de los textos se dio desde un punto de vista pragmático pensando principalmente en el registro y tenor funcional (relación entre los interlocutores). Los géneros fueron entonces artículos de investigación formato InMRyD en el nivel alto, GPC de estrategia PICO y manuales en el medio; y guías para pacientes y notas periodísticas en el nivel bajo. En tercer lugar, se desarrollan principalmente dos tipos de análisis: un análisis lingüístico y un análisis estadístico tanto descriptivo como inferencial. El análisis lingüístico se lleva a cabo a través de la caracterización de las unidades previamente seleccionadas como parametrizables en el índice de especialización textual y los posibles contextos de uso que permiten identificar su estatus terminológico y las diferencias sintáctico-semánticas en tres niveles de especialización. Por medio de análisis estadístico se establece cuáles UT o USE poseen diferencias estadísticamente significativas en los niveles alto, medio y bajo de especialización en el dominio de la oncología. Los análisis y comparativas lingüísticas entre las unidades permiten saber si la unidad es o no discriminatoria en el nivel de especialización y se apoyan de dos análisis estadísticos, uno descriptivo y otro inferencial. El modelo para análisis inferencial se fundamentó en una regresión lineal para comprobar la correlación existente entre las variables de las UT y el nivel de especialización textual. A partir de los análisis planteados, se concluye que no todas las unidades pueden ser incluidas en el índice vertical de especialización textual (INVEST), además, se establecen las unidades que pueden ser fácilmente analizadas en muestras pequeñas y las unidades que deben ser estudiadas en corpus de mayor tamaño. Igualmente, se bridan recomendaciones para estudios subsecuentes en la temática trabajada en esta tesis.The aim of this thesis is to analyze terminological units to understand their behavior in texts of different levels of specialization and thus support their inclusion or exclusion in a textual specialization index. Firstly, the VaTeVe reference corpus of 1 680 000 tokens is compiled, consisting of two main corpora in the areas of medicine (841 009 tokens) and environment (840 592 tokens), and three sub-corpora at high, medium and low levels of specialization. Likewise, a sampling is made through two pilot studies in the area of oncology for greater control over the variables. Secondly, the term extraction is carried out through the terminology extraction program TermostatWeb 3.0 and data is cleaned, adapted and validated by means of computer tools and experts. Terminological adjectives, terminological nouns, terminological adverbs, terminological verbs, terminological verbs, abbreviated forms and SNEE were analyzed in a sample of three texts in 8 experiments, that is to say, a total of 24 texts for sampling in oncology. In this stage, the field of envorinment was excluded. Each of the texts was chosen from the reference corpus and a cut-off was made at 2500 tokens, i.e., each experiment had 7500 tokens distributed in the three texts: high level, medium level and low-level text. The text-types were selected to accurately reflect the level of specialization and for this purpose the selection of the texts was carried out pragmatically, thinking mainly about the register (relationship between the interlocutors). The texts belong to InMRaD format —research articles— at the high level; PICO-strategy CPGs and manuals at the medium level; and guidelines for patients and new at the low level. Third, two main types of analysis were conducted: a linguistic analysis and a statistical analysis both descriptive and inferential. The linguistic analysis is carried out through the characterization of the units previously selected as parameterizable in the textual specialization index and the possible contexts of use that allow us to identify their terminological status and the syntactic-semantic differences in three levels of specialization. By means of statistical analysis, it is established which UT or USE possess statistically significant differences at high, medium and low levels of specialization in the domain of oncology. The linguistic analyses and comparisons for units allow us to know whether or not the unit is discriminatory at the level of specialization and are supported by two statistical analyses, one descriptive and the other inferential. The inferential analysis modelling was based on a linear regression to test the correlation between the variables—UTs and level of text specialization. From the analyses presented, it is concluded that not all units can be included in the vertical index of text specialization (INVEST), and it is also established which units can be easily analyzed in small-size samples and which units should be studied in bigger corpora. Recommendations are also provided for subsequent studies on the subject matter of this thesis.Tabla de contenido Resumen 18 Abstract 21 Introducción 23 1 Planteamiento del problema 25 1.1 Antecedentes 28 1.1.1 Sobre los niveles de especialización textual 28 1.1.1.1 España 29 1.1.1.2 Regionales 33 1.1.2 Sobre los estudios en variación terminológica 35 1.1.2.1 Ámbito internacional 35 1.1.2.2 Regional 40 1.1.2.3 Estudios locales 41 1.2 Recapitulación 42 2. Justificación 46 3. Objetivos 47 3.1 Objetivo general 47 3.2 Objetivos específicos 47 4 Hipótesis 49 4.1 Hipótesis de trabajo 49 4.1.1 Hipótesis nula 50 4.1.2 Hipótesis alterna 50 5 Marco teórico 52 5.1 Introducción 52 5.2 Fundamentos teóricos 54 5.2.1 Discurso especializado 54 5.2.1.1 Características del discurso especializado. 57 5.2.1.2 Partes del discurso 63 5.2.1.2.1 Campo 63 5.2.1.2.2 Tenor 64 5.2.1.2.3 Modo 65 5.2.1.3 Texto especializado 65 5.2.1.4 Tipología textual 66 5.2.1.5 Género textual 66 Artículo de investigación 67 Artículo de revisión 68 Caso clínico 68 Guías de práctica clínica (GPC) 69 Manual de oncología 70 Manual de gestión ambiental 71 Nota periodística 73 Guía para pacientes 74 Cartilla para el cuidado del medio ambiente 77 5.2.1.6 Hibridación textual. 78 5.2.2 Especialización textual 80 5.2.2.1 Verticalidad y la teoría de los sublenguajes 81 5.2.2.2 Niveles de especialización desde la teoría de los sublenguajes y la terminología 83 5.2.3 Terminología 85 5.2.4 Término 87 5.2.4.1 Unidades terminológicas monoléxicas 93 Nombre terminológico 93 Adjetivo terminológico 94 Verbo terminológico 95 Adverbio terminológico 95 5.2.4.2 Unidades terminológicas poliléxicas 96 5.2.4.3 SNEE 97 5.2.4.4 Formas abreviadas 98 5.2.5 Densidad léxica 99 5.2.6 Variación terminológica vertical 100 5.2.7 Variación conceptual y variación denominativa 101 6 Marco Metodológico 104 6.1 Introducción 104 6.1.1 Fases de la metodología 107 6.1.1.1 Plantilla para el diseño del corpus 110 6.1.1.2 Compilación del corpus 111 6.1.1.3 Selección de criterios para la extracción de las unidades terminológicas 112 6.1.1.4 Construcción de los patrones de interrogación 113 6.1.1.5 Selección y comparación de los corpus de análisis 113 6.2 Corpus de variación terminológica vertical (VaTeVe) 114 6.2.1 Criterios de compilación en VaTeVe 114 6.2.1.1 Criterios para la clasificación de textos. 118 6.2.1.1.1 Área temática. 119 6.2.1.1.2 Nivel de especialización 120 6.2.1.2. Caracterización textual. 131 6.2.1.2.1 Corpus de referencia en el área de medicina y medio ambiente. 133 6.2.2 Campos de la base de datos y etiquetas de los archivos 133 6.2.3 Herramientas para el análisis lingüístico, terminológico y estadístico 137 SDL MultitermExtract. 137 TermostatWeb 3.0. 138 AntConc versión 3.4.4. 139 TNTagger. 140 TagAnt. 141 TNTValidate. 142 Wordnet 3.0. 142 SNOMED CT. 142 6.2.4 Extracción de unidades 143 6.2.5 Limpieza de datos 144 6.2.6 Muestreo VaTeVe 149 6.2.7 Estudios piloto 1 y 2 154 6.2.7.1. Criterios de compilación de los textos en los estudios piloto 154 6.2.7.2. Caracterización textual de los estudios piloto 154 6.2.7.3. Codificación, registro y trazabilidad en los estudios piloto 1 y 2 157 6.2.7.3. Criterios de extracción de UT en los estudios piloto. 160 6.2.7.4. Limpieza y validación de las UT extraídas en los estudios piloto 1 y 2 162 6.2.7.5. Análisis en los estudios piloto 164 7 Análisis y resultados 173 7.1 Análisis y resultados preliminares en el subcorpus de nivel alto 174 7.2 Resultados preliminares en el subcorpus nivel medio 177 7.3 Análisis y resultados preliminares en el subcorpus nivel bajo 180 7.5 Patrones morfosintácticos en medicina 182 7.6 Panorama de los niveles de especialización textual desde la perspectiva de un índice vertical de especialización textual (INVEST) en medicina. 189 7.6.1 Índice vertical de especialización textual (INVEST) 193 7.6.1.1 SNEE 194 7.6.1.2 Formas abreviadas (Form.abrev). 207 7.6.1.3 Adjetivo terminológico (AdjT) 215 7.6.1.4 Nombre terminológico (NT). 234 7.6.1.5 Adverbio terminológico (AdvT) 246 7.6.1.6 Verbo terminológico (VerbT) 259 7.6.1.7 Formantes grecolatinos. 270 7.7 Variación terminológica y niveles de especialización 284 7.8 Modelación de estadística inferencial 287 7.8.1 Análisis de regresión lineal para predecir el nivel de especialización de un texto 294 8 Conclusiones 302 8.1 Nombre terminológico (NT) 304 8.2 Adjetivo terminológico (AdjT) 305 8.3 Adverbio terminológico (AdvT) 308 8.4 Verbo terminológico (VT) 310 8.5 SNEE 312 8.6 Formantes grecolatinos (temas) 313 8.7 Variación terminológica 315 8.8 Modelos estadísticos 316 8.9 Validación de hipótesis y objetivos de investigación 318 Bibliografía 322 Bibliografía complementaria 334 Recursos 338 Anexos 339lingüística de corpus, discurso especializado, terminologíaCOL0010388La tesis recibe una calificación de 5.0 con mención honorífica Summa Cum LaudeDoctoradoDoctor en Lingüística370 páginasapplication/pdfspaUniversidad de AntioquiaDoctorado en LingüísticaMedellín, ColombiaFacultad de Comunicaciones y FilologíaCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_f1cfCaracterización lingüística de las unidades terminológicas para determinar el nivel de especialización textualTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06http://purl.org/redcol/resource_type/TDTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftCorpus lingüísticoCorpora (Linguistics)Linguistic analysis (linguistics)TerminologíaTerminologyAnálisis lingüísticoDiscurso especializadoUnidad terminológicaEspecialización textualPublication$18.000.000ORIGINALVasquezDavid_2024_CaracterizacionTerminologica.pdfVasquezDavid_2024_CaracterizacionTerminologica.pdfTesis doctoralapplication/pdf6105314https://bibliotecadigital.udea.edu.co/bitstreams/e8fac70a-3e2d-4a90-a444-891e9c22ebd0/downloade8557436d43e6873dbfe2a17543c8775MD56trueAnonymousREAD2026-10-09LICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/e18b09b7-c129-471d-9ddb-ae4e944cf0bc/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD54falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/68cd74a6-6131-4b5e-9618-bbf59f266db8/download5643bfd9bcf29d560eeec56d584edaa9MD57falseAnonymousREADTEXTVásquezDavid_2024_UnidadesTerminológicasLingüística.pdf.txtVásquezDavid_2024_UnidadesTerminológicasLingüística.pdf.txtExtracted texttext/plain101966https://bibliotecadigital.udea.edu.co/bitstreams/1f2c08d5-8f62-414f-b5eb-1bc47937b49c/download66746908b636b9c8f0e4a25a46bfcf6dMD58falseAnonymousREAD2026-10-10VasquezDavid_2024_CaracterizaciónTerminológica.pdf.txtVasquezDavid_2024_CaracterizaciónTerminológica.pdf.txtExtracted texttext/plain101964https://bibliotecadigital.udea.edu.co/bitstreams/c03856be-90b6-4934-9bcc-bc780108c127/download80bcb8b492c1cfc912119572d26989dfMD510falseAnonymousREAD2026-10-09VasquezDavid_2024_CaracterizacionTerminologica.pdf.txtVasquezDavid_2024_CaracterizacionTerminologica.pdf.txtExtracted texttext/plain101964https://bibliotecadigital.udea.edu.co/bitstreams/a6df1ded-ec68-4111-b5dd-a2056b267413/download80bcb8b492c1cfc912119572d26989dfMD512falseAnonymousREAD2026-10-09THUMBNAILVásquezDavid_2024_UnidadesTerminológicasLingüística.pdf.jpgVásquezDavid_2024_UnidadesTerminológicasLingüística.pdf.jpgGenerated Thumbnailimage/jpeg6486https://bibliotecadigital.udea.edu.co/bitstreams/04dc2968-db03-4e48-bfb4-cd5bf612462f/download461774d9a8ee88f45066b0a2e6a67304MD59falseAnonymousREAD2026-10-10VasquezDavid_2024_CaracterizaciónTerminológica.pdf.jpgVasquezDavid_2024_CaracterizaciónTerminológica.pdf.jpgGenerated Thumbnailimage/jpeg6486https://bibliotecadigital.udea.edu.co/bitstreams/6d21db00-5038-4732-a0a6-6e7b54570687/download461774d9a8ee88f45066b0a2e6a67304MD511falseAnonymousREAD2026-10-09VasquezDavid_2024_CaracterizacionTerminologica.pdf.jpgVasquezDavid_2024_CaracterizacionTerminologica.pdf.jpgGenerated Thumbnailimage/jpeg6486https://bibliotecadigital.udea.edu.co/bitstreams/34fbedee-c8b7-4489-87f2-c38e6951e2e0/download461774d9a8ee88f45066b0a2e6a67304MD513falseAnonymousREAD2026-10-0910495/45761oai:bibliotecadigital.udea.edu.co:10495/457612025-05-09 04:10:47.817http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2026-10-09https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=