Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology

ABSTRACT : In this work, a new computer vision method is proposed to classify Chrysanthemum cuttings through their leaf morphological traits, which can optimize the selection of ideal cuttings for rooting in the plant propagation process. The implementation of the method was divided into two stages:...

Full description

Autores:
Pavas Henao, Juan Guillermo
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45686
Acceso en línea:
https://hdl.handle.net/10495/45686
Palabra clave:
Computer vision
Visión por ordenador
Image processing
Proceso de imágenes
Machine learning
Aprendizaje automático
Plant propagation
Plantas - Multiplicación
Chrysanthemum
http://aims.fao.org/aos/agrovoc/c_1599
http://id.loc.gov/authorities/subjects/sh85029549
http://id.loc.gov/authorities/subjects/sh85064446
http://id.loc.gov/authorities/subjects/sh85079324
http://id.loc.gov/authorities/subjects/sh85102802
Computer vision
Rights
embargoedAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_6c6cd45e2e7bcbdb66a44fea8e5e6ee4
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45686
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.eng.fl_str_mv Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology
title Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology
spellingShingle Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology
Computer vision
Visión por ordenador
Image processing
Proceso de imágenes
Machine learning
Aprendizaje automático
Plant propagation
Plantas - Multiplicación
Chrysanthemum
http://aims.fao.org/aos/agrovoc/c_1599
http://id.loc.gov/authorities/subjects/sh85029549
http://id.loc.gov/authorities/subjects/sh85064446
http://id.loc.gov/authorities/subjects/sh85079324
http://id.loc.gov/authorities/subjects/sh85102802
Computer vision
title_short Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology
title_full Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology
title_fullStr Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology
title_full_unstemmed Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology
title_sort Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology
dc.creator.fl_str_mv Pavas Henao, Juan Guillermo
dc.contributor.advisor.none.fl_str_mv Fernández Mc-Cann, David Stephen
dc.contributor.author.none.fl_str_mv Pavas Henao, Juan Guillermo
dc.contributor.researchgroup.none.fl_str_mv GEPAR-Grupo de Electrónica de Potencia, Automatización y Robótica
dc.contributor.jury.none.fl_str_mv Pineda Alarcón, Ludy
Vélez Macías, Fabio
dc.subject.lcsh.none.fl_str_mv Computer vision
Visión por ordenador
Image processing
Proceso de imágenes
Machine learning
Aprendizaje automático
Plant propagation
Plantas - Multiplicación
topic Computer vision
Visión por ordenador
Image processing
Proceso de imágenes
Machine learning
Aprendizaje automático
Plant propagation
Plantas - Multiplicación
Chrysanthemum
http://aims.fao.org/aos/agrovoc/c_1599
http://id.loc.gov/authorities/subjects/sh85029549
http://id.loc.gov/authorities/subjects/sh85064446
http://id.loc.gov/authorities/subjects/sh85079324
http://id.loc.gov/authorities/subjects/sh85102802
Computer vision
dc.subject.agrovoc.none.fl_str_mv Chrysanthemum
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_1599
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh85029549
http://id.loc.gov/authorities/subjects/sh85064446
http://id.loc.gov/authorities/subjects/sh85079324
http://id.loc.gov/authorities/subjects/sh85102802
dc.subject.ieee.none.fl_str_mv Computer vision
description ABSTRACT : In this work, a new computer vision method is proposed to classify Chrysanthemum cuttings through their leaf morphological traits, which can optimize the selection of ideal cuttings for rooting in the plant propagation process. The implementation of the method was divided into two stages: image processing, using traditional techniques; and machine learning, through unsupervised and supervised models. In this way, to carry out the first stage, a set of 650 cuttings leaf images of the cultivar Chrysanthemum × morifolium 'Baltica' was formed, which allowed the building of a set of feature vectors corresponding to the samples. Those vectors were made up of the area, perimeter, length, and diameter features of the leaf morphological parts of veins, petiole, leaf blade, and lobes. So, leaf measured traits such as vein area, vein perimeter, vein length, vein diameter, petiole area, petiole perimeter, petiole length, petiole diameter, leaf blade area, leaf blade perimeter, leaf blade length, leaf blade diameter, upper lobe length, left upper lobe length, left lower lobe length, right upper lobe length, and right lower lobe length were defined. Then, for the second stage, the samples were labeled according to the cluster obtained when a K-means unsupervised learning model was fitted, forming the dataset. Next, different supervised learning models such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) y K-Nearest Neighbors (KNN) were trained, applying the Cross-Validation (CV) method to find the respective optimal hyper-parameters that had been previously defined. Likewise, different scenarios of feature combinations were defined to evaluate the performance of the models in the training with CV. The scenarios were defined using the features of the leaf morphological traits together and separately, to find those that could determine with the highest accuracy the state of leaf development. Thus, when training with all the features, the classifiers with the best performance were found, obtaining accuracy percentages of 92% for LR, 91% for SVM and RF, and 87% for KNN. On the other hand, with the features of the morphological traits separately, the classifiers with the higher accuracy percentages were those in which lobe features were used, achieving accuracies of 80% for SVM, 78% for RF, 77% for LR, and 74% for KNN. Finally, taking into account all scenarios and model types, the best classifier was the SVM, because it obtained the best results in the scenarios with the separate morphological traits, in addition to having fewer hyper-parameters to fit compared to RF, which obtained the second best results.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-04-10T16:09:19Z
dc.date.issued.none.fl_str_mv 2025
dc.date.available.none.fl_str_mv 2027-04-01
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
status_str draft
dc.identifier.citation.none.fl_str_mv Pavas Henao, J. G. “Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology”, Master’s Degree Thesis, Master’s Degree in Engineering, Universidad de Antioquia, Medell´ın, Antioquia, Colombia, 2024.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45686
identifier_str_mv Pavas Henao, J. G. “Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology”, Master’s Degree Thesis, Master’s Degree in Engineering, Universidad de Antioquia, Medell´ın, Antioquia, Colombia, 2024.
url https://hdl.handle.net/10495/45686
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Juan Guillermo Pavas-Henao, David Fernández-Mc Cann, and Dagoberto Castro Restrepo. “Method for analyzing morphological traits of chrysanthemum cuttings based on computer vision”. In: Engineering for Transformation. Editorial EIA, 2022, pp. 451–458. isbn: 978-628-95287-1-8. url: https://expoingenieria. edu.co/wp-content/uploads/2022/10/Libro-IC_ExpoIngenieria.pdf
David Fernández-Mc Cann, Dagoberto Castro-Restrepo, and Juan Guillermo Pavas-Henao. EIVEN: CLASIFICACION DE ESQUEJES IDEALES DE CRISANTEMO POR SUS VENAS. Libro 13 - Tomo 89 - Partida 29 Fecha: 24-feb.- 2022. MINISTERIO DEL INTERIOR DIRECCION NACIONAL DE DERECHO DE AUTOR UNIDAD ADMINISTRATIVA ESPECIAL OFICINA DE REGISTRO CERTIFICADO DE REGISTRO DE SOPORTE LOGICO – SOFTWARE, 2022.
Marta L Quiros. “La Floricultura en Colombia en el marco de la globalización: Aproximaciones hacia un análisis micro y macroeconómico”. In: Revista Universidad EAFIT 37.122 (2001), pp. 59–68. url: https://publicaciones. eafit.edu.co/index.php/revista-universidad-eafit/article/view/ 992.
Luis Martın Urrea Bello, Luz Gabina Garzon Cardenas, and Lucıa Elena Perez Suarez. “Medición del desempeño en la cadena de abastecimiento del sector floricultor colombiano”. In: Revista Activos 7.13 (2007), pp. 16–49. doi: https://doi.org/10.15332/s0124-5805.2007.0013.01.
Yunjian Xia et al. “The World Floriculture Industry: Dynamics of Production and Markets”. In: Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues. Vol. 4. Global Science Books, 2006, pp. 336–347. isbn: 978-4-903313-09-2. url: https :/ /researchportal . helsinki. fi/en/publications/the-world-floriculture-industry-dynamics-ofproduction-and-market.
Daniel Workman. Flower Bouquet Exports by Country. 2018. url: http://www.worldstopexports.com/flower-bouquet-exports-country/ (visited on 03/21/2019)
Fernando Tenjo Galarza, Enrique Montes Uribe, and Jorge Ernesto Martınez Torres. “Comportamiento reciente del sector floricultor colombiano (2000-2005)”. In: Revista del Banco de la Rep´ublica 78.938 (2005). url: https ://publicaciones.banrepcultural.org/index.php/banrep /article/view/10171.
The Floral Marketing Association and Sociaty of American Florists. “Recomended grades & standards for fresh cut flowers”. In: Journal of Standards Manual (1994)
Association of Floral Importers of Florida (AFIF) and Asociación Colombiana de Exportadores de Flores (Asocolflores). “Cut flowers minimum guidelines & standards”. In: Journal of Standards Manual (2009).
James E Faust, John M Dole, and Roberto G Lopez. “The floriculture vegetative cutting industry”. In: Horticultural Reviews. Vol. 44. Wiley Online Library, 2016, pp. 121–172. doi: https://doi.org/10.1002/9781119281269. ch3.
Thanh Hoang et al. “Analysis of the morphological characteristics and karyomorphology of wild Chrysanthemum species in Korea”. In: Horticulture, Environment, and Biotechnology 61.2 (2020), pp. 359–369. doi: https://doi. org/10.1007/s13580-019-00222-9.
Fan Wang et al. “Identification of chrysanthemum (chrysanthemum morifolium) self-incompatibility”. In: The Scientific World Journal (2014). Article 625658. doi: https://doi.org/10.1155/2014/625658.
[13] José Pulgarín. Manual De Producción De Crisantemo. Ceniflores, 2021. isbn: 9789589899373.
Philip McMillan Browse. Plant Propagation: Seeds, roots, bulbs and corms, layering, stem cuttings, leaf cuttings, budding and grafting. Littlehampton Book Services Ltd, 1979.
Daphne Vince-Prue and Rosie Yeomans. The Fundamentals of Horticulture: Theory and Practice. Cambridge University Press, 2014.
Harriet B. Creighton and E. P. Christopher. “Introductory Horticulture”. In: AIBS Bulletin 9.1 (1959), pp. 47–48. doi: https://doi.org/10. 2307/1292762.
Julian C. Schilletter and Harry Wyatt Richey. Textbook of general horticulture. McGraw-Hill Book Company, Inc, 1940.
Lawren Sack and Christine Scoffoni. “Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future”. In: New Phytologist 198.4 (2013), pp. 983–1000. doi: https://doi.org/10. 1111/nph.12253.
Marina Semchenko and Kristjan Zobel. “The role of leaf lobation in elongation responses to shade in the rosette-forming forb Serratula tinctoria (Asteraceae)”. In: Annals of Botany 100.1 (2007), pp. 83–90. doi: https://doi.org/10.1093/aob/mcm074.
Robert Malinowski. “Understanding of leaf development—the science of complexity”. In: Plants 2.3 (2013), pp. 396–415. doi: https://doi.org/10.3390/plants2030396.
David Warren. “Image analysis in chrysanthemum DUS testing”. In: Computers and Electronics in Agriculture 25.3 (2000), pp. 213–220. doi: https: //doi.org/10.1016/S0168-1699(99)00069-1.
Jiangmin Wang Weimin Fang, Zhiyong Guan Sumei Chen, and Fadi Chen Haiyan Tang. “Differentiation of Cut Chrysanthemum Cultivars Based on Multiple Foliar Morphological Parameters”. In: Chinese Bulletin of Botany 48.6 (2013), pp. 608–615. doi: https://doi.org/10.3724/SP.J.1259.2013. 00608.
C. A. Price et al. “Leaf Extraction and Analysis Framework Graphical User Interface: Segmenting and Analyzing the Structure of Leaf Veins and Areoles”. In: Plant Physiology 155.1 (2011), pp. 236–245. doi: https://doi.org/10. 1104/pp.110.162834.
C Li et al. “Extraction of leaf vein based on improved Sobel algorithm and hue information”. In: Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 27.7 (2011), pp. 196–199. doi: https : //doi.org/10.3969/j.issn.1002-6819.2011.07.034.
N. Valliammal and S. N. Geethalakshmi. “Hybrid image segmentation algorithm for leaf recognition and characterization”. In: Proceedings of 2011 International Conference on Process Automation, Control and Computing, PACC 2011 (2011), pp. 1–6. doi: https://doi.org/10.1109/PACC.2011.5978883.
C Li et al. “Extracting vein of leaf image based on K-means clustering”. In: Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 28.17 (2012), pp. 157–162. doi: https://doi.org/10.3969/j.issn.1002-6819.2012.17.023.
J Mounsef and L Karam. “Fully automated quantification of leaf venation structure”. In: Proceedings of the 2012 International Conference on Artificial Intelligence, ICAI 2012. Vol. 2. 2012, pp. 820–825. url: http://worldcompproceedings.com/proc/p2012/ICA3681.pdf.
Jayme Garcia Arnal Barbedo. “An Automatic Method to Detect and Measure Leaf Disease Symptoms Using Digital Image Processing”. In: Plant Disease 98.12 (2014), pp. 1709–1716. doi: https://doi.org/10.1094/pdis-03-14- 0290-re.
Jonas Bühler et al. “phenoVein—a tool for leaf vein segmentation and analysis”. In: Plant physiology 169.4 (2015), pp. 2359–2370. doi: https://doi. org/10.1104/pp.15.00974.
Peter Wilf et al. “Computer vision cracks the leaf code”. In: Proceedings of the National Academy of Sciences 113.12 (2016), pp. 3305–3310. doi: https: //doi.org/10.1073/pnas.1524473113.
Z Song et al. “Temporal and spatial variability of water status in plant leaves by Terahertz imaging”. In: IEEE Transactions on Terahertz Science and Technology 8.5 (2018), pp. 520–527. doi: https://doi.org/10.1109/TTHZ.2018. 2851922.
F Mokhtarian and S Abbasi. “Matching shapes with self-intersections:application to leaf classification”. In: IEEE Transactions on Image Processing 13.5 (2004), pp. 653–661. doi: https://doi.org/10.1109/TIP.2004.826126.
Steven D Rowland et al. “Leaf shape is a predictor of fruit quality and cultivar performance in tomato”. In: New Phytologist 226.3 (May 2020), pp. 851–865. doi: https://doi.org/10.1111/nph.16403.
Kang Gao et al. “Genetic analysis of leaf traits in small-flower chrysanthemum (chrysanthemum × morifolium ramat.)” In: Agronomy 10.5 (2020). Article 697. doi: https://doi.org/10.3390/agronomy10050697.
J G Thanikkal, A Kumar Dubey, and M T Thomas. “Whether color, shape and texture of leaves are the key features for image processing based plant recognition? An analysis!” In: 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE). 2017, pp. 404–409. doi: https : / / doi.org/10.1109/RDCAPE.2017.8358305.
Seiji Takeda, Kasumi Arakawa, and Takeshi Kawai. “Morphological Changes in the Shoot Apex Predicts Anthesis Time in Chrysanthemum morifolium”. In: The Horticulture Journal 86.1 (2017), pp. 113–120. doi: https://doi. org/10.2503/hortj.MI-152.
Chen Fadi et al. Method for identifying chrysanthemum varieties according to leaf shape characteristics. CN102860222B. 2014. url: https://patents. google.com/patent/CN102860222B/en.
Trevor Hastie et al. “The elements of statistical learning: data mining, inference and prediction”. In: The Mathematical Intelligencer 27.2 (2005), pp. 83– 85. url: https://hastie.su.domains/Papers/ESLII.pdf.
William K Pratt. Digital Image Processing: PIKS Scientific Inside. John Wiley & Sons, Inc., 2007. isbn: 9780470097434. doi: https://doi.org/10.1002/ 0470097434.
G Saravanan, G Yamuna, and S Nandhini. “Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models”. In: 2016 International Conference on Communication and Signal Processing (ICCSP). 2016, pp. 462– 466. doi: http://doi.org/10.1109/ICCSP.2016.7754179.
C Tomasi and R Manduchi. “Bilateral filtering for gray and color images”. In: Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). 1998, pp. 839–846. doi: https://doi.org/10.1109/ICCV.1998.710815.
Ian Theodore Young et al. Fundamentals of Image Processing. TU Delft, Faculty of Applied Physics, Pattern Recognition Group, 1995. isbn: 9789075691016. url: https://books.google.com.co/books?id=dMUQtwAACAAJ.
T. Romen Singh et al. “A New Local Adaptive Thresholding Technique in Binarization”. In: Computer Vision and Pattern Recognition (Jan. 2012). doi: https://doi.org/10.48550/arXiv.1201.5227.
J Matas, C Galambos, and J Kittler. “Robust Detection of Lines Using the Progressive Probabilistic Hough Transform”. In: Computer Vision and Image Understanding 78.1 (2000), pp. 119–137. doi: https://doi.org/10.1006/ cviu.1999.0831.
E Roy Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities. Elsevier, 2012. isbn: 9780123869081. doi: https://doi.org/10.1016/ C2010-0-66926-4.
Changming Sun and Pascal Vallotton. Linear feature detection method and apparatus. US8463065B2. 2013. url: https://patents.google.com/patent/ US8463065B2/en.
James Bennett. webcolors Documentation. 2008. url: https://webcolors. readthedocs.io/en/latest/.
Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: The Journal of Machine Learning Research 12.85 (2011), pp. 2825–2830. url: http://jmlr.org/papers/v12/pedregosa11a.html.
Nitesh V Chawla et al. “SMOTE: Synthetic Minority Over-sampling Technique”. In: Journal of Artificial Intelligence Research (JAIR) 16 (2002), pp. 321– 357. doi: https://doi.org/10.1613/jair.953.
Sharon Pastor Simson and Martha C. Straus. Basics of Horticulture. Oxford Book Company, 2010, p. 312. isbn: 9789380179186.
Poonam Singh and Roshan Chettri. “A new propagation method for rapid multiplication of chrysanthemum under in vivo conditions”. In: International Journal of Conservation Science 4.1 (2013), pp. 95–100. url: https://ijcs. ro/public/IJCS-13-09-Singh.pdf.
Christine Scoffoni et al. “Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture”. In: Plant Physiology 156.2 (June 2011), pp. 832–843. doi: https://doi.org/10.1104/ pp.111.173856.
Lawren Sack et al. “Developmentally based scaling of leaf venation architecture explains global ecological patterns”. In: Nature Communications 3 (May 2012). Article 837. doi: https://doi.org/10.1038/ncomms1835.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 55 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.none.fl_str_mv Maestría en Ingeniería
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.branch.none.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/468e1fd9-1131-44d8-b428-6667c8be63a2/download
https://bibliotecadigital.udea.edu.co/bitstreams/852a0093-e37b-4dc9-916f-49796f16cd37/download
https://bibliotecadigital.udea.edu.co/bitstreams/169e0f73-f393-4905-b8bc-dcf76108581a/download
https://bibliotecadigital.udea.edu.co/bitstreams/79e6ad80-3417-4ab1-80cd-44cbd6b5c67e/download
https://bibliotecadigital.udea.edu.co/bitstreams/c5c23297-6f0c-4781-be2c-6be8b7a33409/download
bitstream.checksum.fl_str_mv 5dbb642141c8d92b8f33322b56c9c885
b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
f1880e24e43dddd109d456cb46797b94
6a80ce1bf3ffaa8e91631c8976156371
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052212813299712
spelling Fernández Mc-Cann, David StephenPavas Henao, Juan GuillermoGEPAR-Grupo de Electrónica de Potencia, Automatización y RobóticaPineda Alarcón, LudyVélez Macías, Fabio2025-04-10T16:09:19Z2027-04-012025Pavas Henao, J. G. “Computer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphology”, Master’s Degree Thesis, Master’s Degree in Engineering, Universidad de Antioquia, Medell´ın, Antioquia, Colombia, 2024.https://hdl.handle.net/10495/45686ABSTRACT : In this work, a new computer vision method is proposed to classify Chrysanthemum cuttings through their leaf morphological traits, which can optimize the selection of ideal cuttings for rooting in the plant propagation process. The implementation of the method was divided into two stages: image processing, using traditional techniques; and machine learning, through unsupervised and supervised models. In this way, to carry out the first stage, a set of 650 cuttings leaf images of the cultivar Chrysanthemum × morifolium 'Baltica' was formed, which allowed the building of a set of feature vectors corresponding to the samples. Those vectors were made up of the area, perimeter, length, and diameter features of the leaf morphological parts of veins, petiole, leaf blade, and lobes. So, leaf measured traits such as vein area, vein perimeter, vein length, vein diameter, petiole area, petiole perimeter, petiole length, petiole diameter, leaf blade area, leaf blade perimeter, leaf blade length, leaf blade diameter, upper lobe length, left upper lobe length, left lower lobe length, right upper lobe length, and right lower lobe length were defined. Then, for the second stage, the samples were labeled according to the cluster obtained when a K-means unsupervised learning model was fitted, forming the dataset. Next, different supervised learning models such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) y K-Nearest Neighbors (KNN) were trained, applying the Cross-Validation (CV) method to find the respective optimal hyper-parameters that had been previously defined. Likewise, different scenarios of feature combinations were defined to evaluate the performance of the models in the training with CV. The scenarios were defined using the features of the leaf morphological traits together and separately, to find those that could determine with the highest accuracy the state of leaf development. Thus, when training with all the features, the classifiers with the best performance were found, obtaining accuracy percentages of 92% for LR, 91% for SVM and RF, and 87% for KNN. On the other hand, with the features of the morphological traits separately, the classifiers with the higher accuracy percentages were those in which lobe features were used, achieving accuracies of 80% for SVM, 78% for RF, 77% for LR, and 74% for KNN. Finally, taking into account all scenarios and model types, the best classifier was the SVM, because it obtained the best results in the scenarios with the separate morphological traits, in addition to having fewer hyper-parameters to fit compared to RF, which obtained the second best results.Contents 1 Introduction 1 1.1 Problem statement 1.2 Related work 1.2.1 Search methodology 1.2.2 Selected work 2 Materials and Methods 2.1 Data acquisition 2.2 Leaf morphology 2.3 Method overview 2.4 Image processing 2.4.1 Vein segmentation 2.4.2 Petiole segmentation 2.4.3 Leaf segmentation 2.4.4 Lobes identification 2.4.5 Feature definition 2.5 Machine learning 2.5.1 Labeling by clustering 2.5.2 Classification model 2.5.3 Training and evaluation 3 Results 3.1 Image processing and feature extraction 3.2 Labeling by clustering 3.3 Classification models 4 Analysis of Results and DiscussionVisión ArtificialMaestríaMagíster en Ingeniería55 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_f1cfComputer visionVisión por ordenadorImage processingProceso de imágenesMachine learningAprendizaje automáticoPlant propagationPlantas - MultiplicaciónChrysanthemumhttp://aims.fao.org/aos/agrovoc/c_1599http://id.loc.gov/authorities/subjects/sh85029549http://id.loc.gov/authorities/subjects/sh85064446http://id.loc.gov/authorities/subjects/sh85079324http://id.loc.gov/authorities/subjects/sh85102802Computer visionComputer vision method to determine the quality of Chrysanthemum cuttings through their leaf morphologyTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftMaestría en IngenieríaMedellín, ColombiaFacultad de IngenieríaMedellín, ColombiaJuan Guillermo Pavas-Henao, David Fernández-Mc Cann, and Dagoberto Castro Restrepo. “Method for analyzing morphological traits of chrysanthemum cuttings based on computer vision”. In: Engineering for Transformation. Editorial EIA, 2022, pp. 451–458. isbn: 978-628-95287-1-8. url: https://expoingenieria. edu.co/wp-content/uploads/2022/10/Libro-IC_ExpoIngenieria.pdfDavid Fernández-Mc Cann, Dagoberto Castro-Restrepo, and Juan Guillermo Pavas-Henao. EIVEN: CLASIFICACION DE ESQUEJES IDEALES DE CRISANTEMO POR SUS VENAS. Libro 13 - Tomo 89 - Partida 29 Fecha: 24-feb.- 2022. MINISTERIO DEL INTERIOR DIRECCION NACIONAL DE DERECHO DE AUTOR UNIDAD ADMINISTRATIVA ESPECIAL OFICINA DE REGISTRO CERTIFICADO DE REGISTRO DE SOPORTE LOGICO – SOFTWARE, 2022.Marta L Quiros. “La Floricultura en Colombia en el marco de la globalización: Aproximaciones hacia un análisis micro y macroeconómico”. In: Revista Universidad EAFIT 37.122 (2001), pp. 59–68. url: https://publicaciones. eafit.edu.co/index.php/revista-universidad-eafit/article/view/ 992.Luis Martın Urrea Bello, Luz Gabina Garzon Cardenas, and Lucıa Elena Perez Suarez. “Medición del desempeño en la cadena de abastecimiento del sector floricultor colombiano”. In: Revista Activos 7.13 (2007), pp. 16–49. doi: https://doi.org/10.15332/s0124-5805.2007.0013.01.Yunjian Xia et al. “The World Floriculture Industry: Dynamics of Production and Markets”. In: Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues. Vol. 4. Global Science Books, 2006, pp. 336–347. isbn: 978-4-903313-09-2. url: https :/ /researchportal . helsinki. fi/en/publications/the-world-floriculture-industry-dynamics-ofproduction-and-market.Daniel Workman. Flower Bouquet Exports by Country. 2018. url: http://www.worldstopexports.com/flower-bouquet-exports-country/ (visited on 03/21/2019)Fernando Tenjo Galarza, Enrique Montes Uribe, and Jorge Ernesto Martınez Torres. “Comportamiento reciente del sector floricultor colombiano (2000-2005)”. In: Revista del Banco de la Rep´ublica 78.938 (2005). url: https ://publicaciones.banrepcultural.org/index.php/banrep /article/view/10171.The Floral Marketing Association and Sociaty of American Florists. “Recomended grades & standards for fresh cut flowers”. In: Journal of Standards Manual (1994)Association of Floral Importers of Florida (AFIF) and Asociación Colombiana de Exportadores de Flores (Asocolflores). “Cut flowers minimum guidelines & standards”. In: Journal of Standards Manual (2009).James E Faust, John M Dole, and Roberto G Lopez. “The floriculture vegetative cutting industry”. In: Horticultural Reviews. Vol. 44. Wiley Online Library, 2016, pp. 121–172. doi: https://doi.org/10.1002/9781119281269. ch3.Thanh Hoang et al. “Analysis of the morphological characteristics and karyomorphology of wild Chrysanthemum species in Korea”. In: Horticulture, Environment, and Biotechnology 61.2 (2020), pp. 359–369. doi: https://doi. org/10.1007/s13580-019-00222-9.Fan Wang et al. “Identification of chrysanthemum (chrysanthemum morifolium) self-incompatibility”. In: The Scientific World Journal (2014). Article 625658. doi: https://doi.org/10.1155/2014/625658.[13] José Pulgarín. Manual De Producción De Crisantemo. Ceniflores, 2021. isbn: 9789589899373.Philip McMillan Browse. Plant Propagation: Seeds, roots, bulbs and corms, layering, stem cuttings, leaf cuttings, budding and grafting. Littlehampton Book Services Ltd, 1979.Daphne Vince-Prue and Rosie Yeomans. The Fundamentals of Horticulture: Theory and Practice. Cambridge University Press, 2014.Harriet B. Creighton and E. P. Christopher. “Introductory Horticulture”. In: AIBS Bulletin 9.1 (1959), pp. 47–48. doi: https://doi.org/10. 2307/1292762.Julian C. Schilletter and Harry Wyatt Richey. Textbook of general horticulture. McGraw-Hill Book Company, Inc, 1940.Lawren Sack and Christine Scoffoni. “Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future”. In: New Phytologist 198.4 (2013), pp. 983–1000. doi: https://doi.org/10. 1111/nph.12253.Marina Semchenko and Kristjan Zobel. “The role of leaf lobation in elongation responses to shade in the rosette-forming forb Serratula tinctoria (Asteraceae)”. In: Annals of Botany 100.1 (2007), pp. 83–90. doi: https://doi.org/10.1093/aob/mcm074.Robert Malinowski. “Understanding of leaf development—the science of complexity”. In: Plants 2.3 (2013), pp. 396–415. doi: https://doi.org/10.3390/plants2030396.David Warren. “Image analysis in chrysanthemum DUS testing”. In: Computers and Electronics in Agriculture 25.3 (2000), pp. 213–220. doi: https: //doi.org/10.1016/S0168-1699(99)00069-1.Jiangmin Wang Weimin Fang, Zhiyong Guan Sumei Chen, and Fadi Chen Haiyan Tang. “Differentiation of Cut Chrysanthemum Cultivars Based on Multiple Foliar Morphological Parameters”. In: Chinese Bulletin of Botany 48.6 (2013), pp. 608–615. doi: https://doi.org/10.3724/SP.J.1259.2013. 00608.C. A. Price et al. “Leaf Extraction and Analysis Framework Graphical User Interface: Segmenting and Analyzing the Structure of Leaf Veins and Areoles”. In: Plant Physiology 155.1 (2011), pp. 236–245. doi: https://doi.org/10. 1104/pp.110.162834.C Li et al. “Extraction of leaf vein based on improved Sobel algorithm and hue information”. In: Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 27.7 (2011), pp. 196–199. doi: https : //doi.org/10.3969/j.issn.1002-6819.2011.07.034.N. Valliammal and S. N. Geethalakshmi. “Hybrid image segmentation algorithm for leaf recognition and characterization”. In: Proceedings of 2011 International Conference on Process Automation, Control and Computing, PACC 2011 (2011), pp. 1–6. doi: https://doi.org/10.1109/PACC.2011.5978883.C Li et al. “Extracting vein of leaf image based on K-means clustering”. In: Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 28.17 (2012), pp. 157–162. doi: https://doi.org/10.3969/j.issn.1002-6819.2012.17.023.J Mounsef and L Karam. “Fully automated quantification of leaf venation structure”. In: Proceedings of the 2012 International Conference on Artificial Intelligence, ICAI 2012. Vol. 2. 2012, pp. 820–825. url: http://worldcompproceedings.com/proc/p2012/ICA3681.pdf.Jayme Garcia Arnal Barbedo. “An Automatic Method to Detect and Measure Leaf Disease Symptoms Using Digital Image Processing”. In: Plant Disease 98.12 (2014), pp. 1709–1716. doi: https://doi.org/10.1094/pdis-03-14- 0290-re.Jonas Bühler et al. “phenoVein—a tool for leaf vein segmentation and analysis”. In: Plant physiology 169.4 (2015), pp. 2359–2370. doi: https://doi. org/10.1104/pp.15.00974.Peter Wilf et al. “Computer vision cracks the leaf code”. In: Proceedings of the National Academy of Sciences 113.12 (2016), pp. 3305–3310. doi: https: //doi.org/10.1073/pnas.1524473113.Z Song et al. “Temporal and spatial variability of water status in plant leaves by Terahertz imaging”. In: IEEE Transactions on Terahertz Science and Technology 8.5 (2018), pp. 520–527. doi: https://doi.org/10.1109/TTHZ.2018. 2851922.F Mokhtarian and S Abbasi. “Matching shapes with self-intersections:application to leaf classification”. In: IEEE Transactions on Image Processing 13.5 (2004), pp. 653–661. doi: https://doi.org/10.1109/TIP.2004.826126.Steven D Rowland et al. “Leaf shape is a predictor of fruit quality and cultivar performance in tomato”. In: New Phytologist 226.3 (May 2020), pp. 851–865. doi: https://doi.org/10.1111/nph.16403.Kang Gao et al. “Genetic analysis of leaf traits in small-flower chrysanthemum (chrysanthemum × morifolium ramat.)” In: Agronomy 10.5 (2020). Article 697. doi: https://doi.org/10.3390/agronomy10050697.J G Thanikkal, A Kumar Dubey, and M T Thomas. “Whether color, shape and texture of leaves are the key features for image processing based plant recognition? An analysis!” In: 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE). 2017, pp. 404–409. doi: https : / / doi.org/10.1109/RDCAPE.2017.8358305.Seiji Takeda, Kasumi Arakawa, and Takeshi Kawai. “Morphological Changes in the Shoot Apex Predicts Anthesis Time in Chrysanthemum morifolium”. In: The Horticulture Journal 86.1 (2017), pp. 113–120. doi: https://doi. org/10.2503/hortj.MI-152.Chen Fadi et al. Method for identifying chrysanthemum varieties according to leaf shape characteristics. CN102860222B. 2014. url: https://patents. google.com/patent/CN102860222B/en.Trevor Hastie et al. “The elements of statistical learning: data mining, inference and prediction”. In: The Mathematical Intelligencer 27.2 (2005), pp. 83– 85. url: https://hastie.su.domains/Papers/ESLII.pdf.William K Pratt. Digital Image Processing: PIKS Scientific Inside. John Wiley & Sons, Inc., 2007. isbn: 9780470097434. doi: https://doi.org/10.1002/ 0470097434.G Saravanan, G Yamuna, and S Nandhini. “Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models”. In: 2016 International Conference on Communication and Signal Processing (ICCSP). 2016, pp. 462– 466. doi: http://doi.org/10.1109/ICCSP.2016.7754179.C Tomasi and R Manduchi. “Bilateral filtering for gray and color images”. In: Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). 1998, pp. 839–846. doi: https://doi.org/10.1109/ICCV.1998.710815.Ian Theodore Young et al. Fundamentals of Image Processing. TU Delft, Faculty of Applied Physics, Pattern Recognition Group, 1995. isbn: 9789075691016. url: https://books.google.com.co/books?id=dMUQtwAACAAJ.T. Romen Singh et al. “A New Local Adaptive Thresholding Technique in Binarization”. In: Computer Vision and Pattern Recognition (Jan. 2012). doi: https://doi.org/10.48550/arXiv.1201.5227.J Matas, C Galambos, and J Kittler. “Robust Detection of Lines Using the Progressive Probabilistic Hough Transform”. In: Computer Vision and Image Understanding 78.1 (2000), pp. 119–137. doi: https://doi.org/10.1006/ cviu.1999.0831.E Roy Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities. Elsevier, 2012. isbn: 9780123869081. doi: https://doi.org/10.1016/ C2010-0-66926-4.Changming Sun and Pascal Vallotton. Linear feature detection method and apparatus. US8463065B2. 2013. url: https://patents.google.com/patent/ US8463065B2/en.James Bennett. webcolors Documentation. 2008. url: https://webcolors. readthedocs.io/en/latest/.Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: The Journal of Machine Learning Research 12.85 (2011), pp. 2825–2830. url: http://jmlr.org/papers/v12/pedregosa11a.html.Nitesh V Chawla et al. “SMOTE: Synthetic Minority Over-sampling Technique”. In: Journal of Artificial Intelligence Research (JAIR) 16 (2002), pp. 321– 357. doi: https://doi.org/10.1613/jair.953.Sharon Pastor Simson and Martha C. Straus. Basics of Horticulture. Oxford Book Company, 2010, p. 312. isbn: 9789380179186.Poonam Singh and Roshan Chettri. “A new propagation method for rapid multiplication of chrysanthemum under in vivo conditions”. In: International Journal of Conservation Science 4.1 (2013), pp. 95–100. url: https://ijcs. ro/public/IJCS-13-09-Singh.pdf.Christine Scoffoni et al. “Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture”. In: Plant Physiology 156.2 (June 2011), pp. 832–843. doi: https://doi.org/10.1104/ pp.111.173856.Lawren Sack et al. “Developmentally based scaling of leaf venation architecture explains global ecological patterns”. In: Nature Communications 3 (May 2012). Article 837. doi: https://doi.org/10.1038/ncomms1835.PublicationORIGINALPavasJuan_2025_ComputerVisionChrysanthemum.pdfTesis de maestríaapplication/pdf17037175https://bibliotecadigital.udea.edu.co/bitstreams/468e1fd9-1131-44d8-b428-6667c8be63a2/download5dbb642141c8d92b8f33322b56c9c885MD56trueAnonymousREAD2027-03-31LICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/852a0093-e37b-4dc9-916f-49796f16cd37/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/169e0f73-f393-4905-b8bc-dcf76108581a/download5643bfd9bcf29d560eeec56d584edaa9MD54falseAnonymousREADTEXTPavasJuan_2025_ComputerVisionChrysanthemum.pdf.txtPavasJuan_2025_ComputerVisionChrysanthemum.pdf.txtExtracted texttext/plain98671https://bibliotecadigital.udea.edu.co/bitstreams/79e6ad80-3417-4ab1-80cd-44cbd6b5c67e/downloadf1880e24e43dddd109d456cb46797b94MD57falseAnonymousREAD2027-03-31THUMBNAILPavasJuan_2025_ComputerVisionChrysanthemum.pdf.jpgPavasJuan_2025_ComputerVisionChrysanthemum.pdf.jpgGenerated Thumbnailimage/jpeg5793https://bibliotecadigital.udea.edu.co/bitstreams/c5c23297-6f0c-4781-be2c-6be8b7a33409/download6a80ce1bf3ffaa8e91631c8976156371MD58falseAnonymousREAD2027-03-3110495/45686oai:bibliotecadigital.udea.edu.co:10495/456862025-04-11 04:02:59.04http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2027-03-31https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=