Properties of multivariate beta distributions
ABSTRACT: Let 1 1 , ..., X Xr + be independent random variables, ~ Ga( , ), Xi ai θi i = 1, ..., r +1. Define Y X (X X ) i r i i i r , 1, ..., = + +1 = and , Zi = Xi Xr+1 i = 1, ..., r. Then, ( ) Y Yr , ..., 1 and ( ) Z Zr , ..., 1 follow multivariate beta type 1 and type 2 distributions, respective...
- Autores:
-
Nagar, Daya Krishna
Rada Mora, Erika Alejandra
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2008
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/32968
- Acceso en línea:
- https://hdl.handle.net/10495/32968
http://www.pphmj.com/abstract/3053.htm
- Palabra clave:
- Ecuaciones diferenciales - teoría asintótica
Differential equations - asymptotic theory
Series de Dirichlet
Series, Dirichlet
Transformaciones (matemáticas)
Transformations (mathematics)
Distribución beta
Beta distribution
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_68c0c3f5fb98f477ce614f3552feb1ef |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/32968 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Properties of multivariate beta distributions |
| title |
Properties of multivariate beta distributions |
| spellingShingle |
Properties of multivariate beta distributions Ecuaciones diferenciales - teoría asintótica Differential equations - asymptotic theory Series de Dirichlet Series, Dirichlet Transformaciones (matemáticas) Transformations (mathematics) Distribución beta Beta distribution |
| title_short |
Properties of multivariate beta distributions |
| title_full |
Properties of multivariate beta distributions |
| title_fullStr |
Properties of multivariate beta distributions |
| title_full_unstemmed |
Properties of multivariate beta distributions |
| title_sort |
Properties of multivariate beta distributions |
| dc.creator.fl_str_mv |
Nagar, Daya Krishna Rada Mora, Erika Alejandra |
| dc.contributor.author.none.fl_str_mv |
Nagar, Daya Krishna Rada Mora, Erika Alejandra |
| dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Multivariado |
| dc.subject.lemb.none.fl_str_mv |
Ecuaciones diferenciales - teoría asintótica Differential equations - asymptotic theory Series de Dirichlet Series, Dirichlet Transformaciones (matemáticas) Transformations (mathematics) |
| topic |
Ecuaciones diferenciales - teoría asintótica Differential equations - asymptotic theory Series de Dirichlet Series, Dirichlet Transformaciones (matemáticas) Transformations (mathematics) Distribución beta Beta distribution |
| dc.subject.proposal.spa.fl_str_mv |
Distribución beta Beta distribution |
| description |
ABSTRACT: Let 1 1 , ..., X Xr + be independent random variables, ~ Ga( , ), Xi ai θi i = 1, ..., r +1. Define Y X (X X ) i r i i i r , 1, ..., = + +1 = and , Zi = Xi Xr+1 i = 1, ..., r. Then, ( ) Y Yr , ..., 1 and ( ) Z Zr , ..., 1 follow multivariate beta type 1 and type 2 distributions, respectively. In this article several properties of these distributions and their connections with the multivariate-F and the multivariate-t distributions are discussed. |
| publishDate |
2008 |
| dc.date.issued.none.fl_str_mv |
2008 |
| dc.date.accessioned.none.fl_str_mv |
2022-12-25T16:35:50Z |
| dc.date.available.none.fl_str_mv |
2022-12-25T16:35:50Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0972-0863 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/32968 |
| dc.identifier.url.spa.fl_str_mv |
http://www.pphmj.com/abstract/3053.htm |
| identifier_str_mv |
0972-0863 |
| url |
https://hdl.handle.net/10495/32968 http://www.pphmj.com/abstract/3053.htm |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
94 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.spa.fl_str_mv |
73 |
| dc.relation.citationvolume.spa.fl_str_mv |
24 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Far East Journal of Theoretical Statistics |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
22 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Allahabad |
| dc.publisher.place.spa.fl_str_mv |
Allahabad, India |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/e19e95fc-156b-46e6-bb36-a9296c0bdd6a/download https://bibliotecadigital.udea.edu.co/bitstreams/9b1c19f1-d27c-43c9-a5fc-86b1562ce806/download https://bibliotecadigital.udea.edu.co/bitstreams/569e5b8f-7eed-488b-b7ef-4fab9a4aa139/download https://bibliotecadigital.udea.edu.co/bitstreams/c5a02c43-81e2-4e25-b11c-af70b62f8038/download https://bibliotecadigital.udea.edu.co/bitstreams/568b0549-a97e-4f81-bb92-5bc23d61672c/download |
| bitstream.checksum.fl_str_mv |
500cc9963df448d962f1138fc550ddfd e2060682c9c70d4d30c83c51448f4eed 8a4605be74aa9ea9d79846c1fba20a33 cb813521ed3350d7e01b3c0ecf08bdc3 9f96eb18b88f264787e491fc16478164 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052637481336832 |
| spelling |
Nagar, Daya KrishnaRada Mora, Erika AlejandraAnálisis Multivariado2022-12-25T16:35:50Z2022-12-25T16:35:50Z20080972-0863https://hdl.handle.net/10495/32968http://www.pphmj.com/abstract/3053.htmABSTRACT: Let 1 1 , ..., X Xr + be independent random variables, ~ Ga( , ), Xi ai θi i = 1, ..., r +1. Define Y X (X X ) i r i i i r , 1, ..., = + +1 = and , Zi = Xi Xr+1 i = 1, ..., r. Then, ( ) Y Yr , ..., 1 and ( ) Z Zr , ..., 1 follow multivariate beta type 1 and type 2 distributions, respectively. In this article several properties of these distributions and their connections with the multivariate-F and the multivariate-t distributions are discussed.COL000053222application/pdfengUniversidad de AllahabadAllahabad, Indiahttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-sa/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Properties of multivariate beta distributionsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEcuaciones diferenciales - teoría asintóticaDifferential equations - asymptotic theorySeries de DirichletSeries, DirichletTransformaciones (matemáticas)Transformations (mathematics)Distribución betaBeta distribution9417324Far East Journal of Theoretical StatisticsPublicationORIGINALNagarDaya_2008_PropertiesMultivariate.pdfNagarDaya_2008_PropertiesMultivariate.pdfArtículo de investigaciónapplication/pdf214546https://bibliotecadigital.udea.edu.co/bitstreams/e19e95fc-156b-46e6-bb36-a9296c0bdd6a/download500cc9963df448d962f1138fc550ddfdMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/9b1c19f1-d27c-43c9-a5fc-86b1562ce806/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/569e5b8f-7eed-488b-b7ef-4fab9a4aa139/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTNagarDaya_2008_PropertiesMultivariate.pdf.txtNagarDaya_2008_PropertiesMultivariate.pdf.txtExtracted texttext/plain35345https://bibliotecadigital.udea.edu.co/bitstreams/c5a02c43-81e2-4e25-b11c-af70b62f8038/downloadcb813521ed3350d7e01b3c0ecf08bdc3MD54falseAnonymousREADTHUMBNAILNagarDaya_2008_PropertiesMultivariate.pdf.jpgNagarDaya_2008_PropertiesMultivariate.pdf.jpgGenerated Thumbnailimage/jpeg8313https://bibliotecadigital.udea.edu.co/bitstreams/568b0549-a97e-4f81-bb92-5bc23d61672c/download9f96eb18b88f264787e491fc16478164MD55falseAnonymousREAD10495/32968oai:bibliotecadigital.udea.edu.co:10495/329682025-03-27 01:27:21.864https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
