EEG Functional Connectivity Measures for Emotional Processing Analysis

ABSTRACT: Emotional processing (EP) is necessary for the analysis of everyday situations and for the expression of social cognition and behavior (SCB) patterns. In ex-combatants, EP is affected by chronic exposure to violent events. For a successful reintegration into society, it is necessary to cha...

Full description

Autores:
Quintero Zea, Andrés
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2019
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/13299
Acceso en línea:
http://hdl.handle.net/10495/13299
Palabra clave:
Social cognitive theory
Electroencefalografía
Electroencephalography
Emotional processing
Emotional processing
Ex-combatants
Functional connectivity
http://id.loc.gov/authorities/subjects/sh2009002409
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_689ab98aaf201915f1ca3cb93b95512e
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/13299
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv EEG Functional Connectivity Measures for Emotional Processing Analysis
title EEG Functional Connectivity Measures for Emotional Processing Analysis
spellingShingle EEG Functional Connectivity Measures for Emotional Processing Analysis
Social cognitive theory
Electroencefalografía
Electroencephalography
Emotional processing
Emotional processing
Ex-combatants
Functional connectivity
http://id.loc.gov/authorities/subjects/sh2009002409
title_short EEG Functional Connectivity Measures for Emotional Processing Analysis
title_full EEG Functional Connectivity Measures for Emotional Processing Analysis
title_fullStr EEG Functional Connectivity Measures for Emotional Processing Analysis
title_full_unstemmed EEG Functional Connectivity Measures for Emotional Processing Analysis
title_sort EEG Functional Connectivity Measures for Emotional Processing Analysis
dc.creator.fl_str_mv Quintero Zea, Andrés
dc.contributor.advisor.none.fl_str_mv López Hincapié, José David
dc.contributor.author.none.fl_str_mv Quintero Zea, Andrés
dc.contributor.researchgroup.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.subject.lcsh.none.fl_str_mv Social cognitive theory
topic Social cognitive theory
Electroencefalografía
Electroencephalography
Emotional processing
Emotional processing
Ex-combatants
Functional connectivity
http://id.loc.gov/authorities/subjects/sh2009002409
dc.subject.decs.none.fl_str_mv Electroencefalografía
Electroencephalography
dc.subject.proposal.spa.fl_str_mv Emotional processing
Emotional processing
Ex-combatants
Functional connectivity
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2009002409
description ABSTRACT: Emotional processing (EP) is necessary for the analysis of everyday situations and for the expression of social cognition and behavior (SCB) patterns. In ex-combatants, EP is affected by chronic exposure to violent events. For a successful reintegration into society, it is necessary to characterize their brain responses to emotional stimuli, as a first stage to develop interventions in mental health. In the present work, we present three approaches to assess emotional processing and its relation with SCB dimensions, such as aggression and social skills, in a sample of 50 subjects, 30 ex-combatants from illegally armed groups in Colombia and 20 controls without combat experience. To achieve this objective, we use EEG data from an emotion recognition task for faces and words. In the first approach, we implement a SVM classifier using features extracted from event-related potentials. Classification rate is improved by incorporating SCB features. For the second approach, we extract features from functional connectivity network(FCN)todiscriminatetheneuralreorganizationinex-combatantsfromcontrols. Inthis approach, we use a feature fusion scheme based on canonical correlation analysis for integrating SCB scores. Finally, we perform a canonical correlation analysis to explore relations among FCN and behavioral variables related to performance in the task. In general, the proposed approaches provide new empirical knowledge on the atypical EP in ex-combatants elicited by a neural reorganization.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-01-16T15:44:19Z
dc.date.available.none.fl_str_mv 2020-01-16T15:44:19Z
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.citation.spa.fl_str_mv Quintero Zea, A. (2019). EEG Functional Connectivity Measures for Emotional Processing Analysis (Tesis de doctoral). Universidad de Antioquia, Medellín, Colombia.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/13299
identifier_str_mv Quintero Zea, A. (2019). EEG Functional Connectivity Measures for Emotional Processing Analysis (Tesis de doctoral). Universidad de Antioquia, Medellín, Colombia.
url http://hdl.handle.net/10495/13299
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 81
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería. Doctorado en Ingeniería Electrónica
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/698f1488-2f85-4b68-b54e-bf672d467fd3/download
https://bibliotecadigital.udea.edu.co/bitstreams/321efbf7-5709-41e8-89bc-09d7c02ee275/download
https://bibliotecadigital.udea.edu.co/bitstreams/e1fad066-243d-470d-811e-e59924f74a62/download
https://bibliotecadigital.udea.edu.co/bitstreams/59b7035e-e8ce-4a43-a293-11036ec778da/download
https://bibliotecadigital.udea.edu.co/bitstreams/75dd151f-440b-4a93-aa21-504c27431872/download
https://bibliotecadigital.udea.edu.co/bitstreams/5acc9a15-6e96-411a-bc57-f657d5570344/download
https://bibliotecadigital.udea.edu.co/bitstreams/e7d3ffc0-1c0b-4918-9d56-904473165ead/download
bitstream.checksum.fl_str_mv a3512f68a19f8a1eb88bda5ef945d02d
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
0961e394c3de1e8a89ef8c89a12e3bb2
8b3dca31765d2c3283954af37b282b24
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052582918684672
spelling López Hincapié, José DavidQuintero Zea, AndrésSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2020-01-16T15:44:19Z2020-01-16T15:44:19Z2019Quintero Zea, A. (2019). EEG Functional Connectivity Measures for Emotional Processing Analysis (Tesis de doctoral). Universidad de Antioquia, Medellín, Colombia.http://hdl.handle.net/10495/13299ABSTRACT: Emotional processing (EP) is necessary for the analysis of everyday situations and for the expression of social cognition and behavior (SCB) patterns. In ex-combatants, EP is affected by chronic exposure to violent events. For a successful reintegration into society, it is necessary to characterize their brain responses to emotional stimuli, as a first stage to develop interventions in mental health. In the present work, we present three approaches to assess emotional processing and its relation with SCB dimensions, such as aggression and social skills, in a sample of 50 subjects, 30 ex-combatants from illegally armed groups in Colombia and 20 controls without combat experience. To achieve this objective, we use EEG data from an emotion recognition task for faces and words. In the first approach, we implement a SVM classifier using features extracted from event-related potentials. Classification rate is improved by incorporating SCB features. For the second approach, we extract features from functional connectivity network(FCN)todiscriminatetheneuralreorganizationinex-combatantsfromcontrols. Inthis approach, we use a feature fusion scheme based on canonical correlation analysis for integrating SCB scores. Finally, we perform a canonical correlation analysis to explore relations among FCN and behavioral variables related to performance in the task. In general, the proposed approaches provide new empirical knowledge on the atypical EP in ex-combatants elicited by a neural reorganization.DoctoradoDoctor en Ingeniería Electrónica81application/pdfspaUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Electrónicahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Social cognitive theoryElectroencefalografíaElectroencephalographyEmotional processingEmotional processingEx-combatantsFunctional connectivityhttp://id.loc.gov/authorities/subjects/sh2009002409EEG Functional Connectivity Measures for Emotional Processing AnalysisTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftPublicationORIGINALDIE 12711.pdfDIE 12711.pdfTesis doctoralapplication/pdf5173221https://bibliotecadigital.udea.edu.co/bitstreams/698f1488-2f85-4b68-b54e-bf672d467fd3/downloada3512f68a19f8a1eb88bda5ef945d02dMD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/321efbf7-5709-41e8-89bc-09d7c02ee275/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/e1fad066-243d-470d-811e-e59924f74a62/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/59b7035e-e8ce-4a43-a293-11036ec778da/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/75dd151f-440b-4a93-aa21-504c27431872/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTDIE 12711.pdf.txtDIE 12711.pdf.txtExtracted texttext/plain100632https://bibliotecadigital.udea.edu.co/bitstreams/5acc9a15-6e96-411a-bc57-f657d5570344/download0961e394c3de1e8a89ef8c89a12e3bb2MD56falseAnonymousREADTHUMBNAILDIE 12711.pdf.jpgDIE 12711.pdf.jpgGenerated Thumbnailimage/jpeg7768https://bibliotecadigital.udea.edu.co/bitstreams/e7d3ffc0-1c0b-4918-9d56-904473165ead/download8b3dca31765d2c3283954af37b282b24MD57falseAnonymousREAD10495/13299oai:bibliotecadigital.udea.edu.co:10495/132992025-03-27 00:38:12.366http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=