Developing of Metal-Halide Perovskite-Type Materials for electrodes of Lithium-Ion Batteries

ABSTRACT : Hybrid and inorganic metal halides with perovskite-type structures have been successfully applied in the battery field thanks to their 3D diffusion channels and robust architecture, which allow relatively high charge mobility, leading to easy metal-ion intercalation, as well as tunable el...

Full description

Autores:
López Chalarca, Liliana Trinidad
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/36378
Acceso en línea:
https://hdl.handle.net/10495/36378
Palabra clave:
Almacenamiento de energía
Energy storage
Baterías eléctricas
Electric batteries
Perovskite
Perovskita
Lithium-ion battery
Batería de ion-litio
Sodium-ion battery
Batería de ion-sodio
Electrochemical devices
Dispositivos electroquímicos
Rights
embargoedAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_687a1e8d5f8f447020e2e6c858473d17
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/36378
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Developing of Metal-Halide Perovskite-Type Materials for electrodes of Lithium-Ion Batteries
dc.title.translated.spa.fl_str_mv Desarrollo de materiales tipo perovskita de metal-haluro como electrodos de baterías de ion-litio
title Developing of Metal-Halide Perovskite-Type Materials for electrodes of Lithium-Ion Batteries
spellingShingle Developing of Metal-Halide Perovskite-Type Materials for electrodes of Lithium-Ion Batteries
Almacenamiento de energía
Energy storage
Baterías eléctricas
Electric batteries
Perovskite
Perovskita
Lithium-ion battery
Batería de ion-litio
Sodium-ion battery
Batería de ion-sodio
Electrochemical devices
Dispositivos electroquímicos
title_short Developing of Metal-Halide Perovskite-Type Materials for electrodes of Lithium-Ion Batteries
title_full Developing of Metal-Halide Perovskite-Type Materials for electrodes of Lithium-Ion Batteries
title_fullStr Developing of Metal-Halide Perovskite-Type Materials for electrodes of Lithium-Ion Batteries
title_full_unstemmed Developing of Metal-Halide Perovskite-Type Materials for electrodes of Lithium-Ion Batteries
title_sort Developing of Metal-Halide Perovskite-Type Materials for electrodes of Lithium-Ion Batteries
dc.creator.fl_str_mv López Chalarca, Liliana Trinidad
dc.contributor.advisor.none.fl_str_mv Calderón Gutiérrez, Jorge Andrés
Jaramillo Isaza, Franklin
dc.contributor.author.none.fl_str_mv López Chalarca, Liliana Trinidad
dc.contributor.researchgroup.spa.fl_str_mv Centro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)
dc.subject.lemb.none.fl_str_mv Almacenamiento de energía
Energy storage
Baterías eléctricas
Electric batteries
topic Almacenamiento de energía
Energy storage
Baterías eléctricas
Electric batteries
Perovskite
Perovskita
Lithium-ion battery
Batería de ion-litio
Sodium-ion battery
Batería de ion-sodio
Electrochemical devices
Dispositivos electroquímicos
dc.subject.proposal.spa.fl_str_mv Perovskite
Perovskita
Lithium-ion battery
Batería de ion-litio
Sodium-ion battery
Batería de ion-sodio
Electrochemical devices
Dispositivos electroquímicos
description ABSTRACT : Hybrid and inorganic metal halides with perovskite-type structures have been successfully applied in the battery field thanks to their 3D diffusion channels and robust architecture, which allow relatively high charge mobility, leading to easy metal-ion intercalation, as well as tunable electrical properties of the structure due to atom substitutions. The present work was focused to explore alternative active material of ABX3- perovskite type of metal-halide as an electrode with the use of components, such as fluorides, chlorides, sodium salts, and transition metals as nickel, iron, and manganese that are earth-abundant material, with accurate geographical distribution, less cost, and more environmentally friendly than other elements as lead and cobalt. Those electrodes were explored from easier routes of synthesis such as solvothermal, milling, and evaporation process which would expect to reduce the cost of battery production. All of that makes it an attractive material electrode for exploration mainly in lithium-ion batteries, however some evaluations were carried out also in sodium-ion batteries. The study began with ternary materials from NaCl-FeCl2 system evaluation. In this case discarded NaFeCl3 formation, however, alternative ternary as Na2Fe3Cl8 was studied. To obtain the ABX3 perovskite type structure the Cl element was substituted by F atom for what NaMnF3 and NaNiF3 perovskite structures were explored. In those cases, different morphologies and sizes of particles were studied by microwave and conventional heating, with the incorporation of carbonaceous components that interact with the active material creating a continuous conductive phase control that could improve some electrochemical performances. Additionally, a composite NaNiF3/Ni was obtained by electrochemical dissolution of nickel foam. These materials were evaluated as an electrode in lithium and sodium-ion semi-cells. Finally, a hybrid organic-inorganic CH3NH3NiCl3 active material was studied as an electrode in lithium-ion cells by conventional and electrochemical reversibility processes. That material conserved the chemistry composition of ABX3-type where X is Cl. Although this structure is deflected from perovskite structure its stability was conserved by replacing the Na+ inorganic by CH3NH3+ organic cation. The mechanism of reaction in those active material electrodes with ABX3 perovskite-type structures was also studied, and here was confirmed a conversion-type mechanism in the case of the inorganic materials, while for the hybrid material, it may drive a combination of reaction mechanisms such as intercalation, conversion, and alloying.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-28T14:18:43Z
dc.date.available.none.fl_str_mv 2023-08-28T14:18:43Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/36378
url https://hdl.handle.net/10495/36378
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 279
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería. Doctorado en Ingeniería de Materiales
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/60280d67-eddd-44b7-8ee9-ed93d10313b7/download
https://bibliotecadigital.udea.edu.co/bitstreams/623b246a-0fcb-43bb-a787-cebcef79b5c9/download
https://bibliotecadigital.udea.edu.co/bitstreams/8d4d7452-e15d-4ddc-8a6d-147117072602/download
https://bibliotecadigital.udea.edu.co/bitstreams/ce359dd3-bb94-4020-a448-258a302de38d/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
c7c0847592aebfa439d6ac20fa43246d
5e2ac28e88260cbea967b0aea784d1aa
6af80f87ede5eb13fdb0ff2478cca99d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052323185360896
spelling Calderón Gutiérrez, Jorge AndrésJaramillo Isaza, FranklinLópez Chalarca, Liliana TrinidadCentro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)2023-08-28T14:18:43Z2023-08-28T14:18:43Z2023https://hdl.handle.net/10495/36378ABSTRACT : Hybrid and inorganic metal halides with perovskite-type structures have been successfully applied in the battery field thanks to their 3D diffusion channels and robust architecture, which allow relatively high charge mobility, leading to easy metal-ion intercalation, as well as tunable electrical properties of the structure due to atom substitutions. The present work was focused to explore alternative active material of ABX3- perovskite type of metal-halide as an electrode with the use of components, such as fluorides, chlorides, sodium salts, and transition metals as nickel, iron, and manganese that are earth-abundant material, with accurate geographical distribution, less cost, and more environmentally friendly than other elements as lead and cobalt. Those electrodes were explored from easier routes of synthesis such as solvothermal, milling, and evaporation process which would expect to reduce the cost of battery production. All of that makes it an attractive material electrode for exploration mainly in lithium-ion batteries, however some evaluations were carried out also in sodium-ion batteries. The study began with ternary materials from NaCl-FeCl2 system evaluation. In this case discarded NaFeCl3 formation, however, alternative ternary as Na2Fe3Cl8 was studied. To obtain the ABX3 perovskite type structure the Cl element was substituted by F atom for what NaMnF3 and NaNiF3 perovskite structures were explored. In those cases, different morphologies and sizes of particles were studied by microwave and conventional heating, with the incorporation of carbonaceous components that interact with the active material creating a continuous conductive phase control that could improve some electrochemical performances. Additionally, a composite NaNiF3/Ni was obtained by electrochemical dissolution of nickel foam. These materials were evaluated as an electrode in lithium and sodium-ion semi-cells. Finally, a hybrid organic-inorganic CH3NH3NiCl3 active material was studied as an electrode in lithium-ion cells by conventional and electrochemical reversibility processes. That material conserved the chemistry composition of ABX3-type where X is Cl. Although this structure is deflected from perovskite structure its stability was conserved by replacing the Na+ inorganic by CH3NH3+ organic cation. The mechanism of reaction in those active material electrodes with ABX3 perovskite-type structures was also studied, and here was confirmed a conversion-type mechanism in the case of the inorganic materials, while for the hybrid material, it may drive a combination of reaction mechanisms such as intercalation, conversion, and alloying.RESUMEN : Los Haluros metálicos híbridos e inorgánicos con estructuras del tipo perovskita han sido satisfactoriamente aplicados en el campo de baterías, gracias a sus canales de difusión 3D y su arquitectura robusta. Lo cual permite relativamente una alta movilidad de carga, lo que conduce a una fácil intercalación de iones metálicos, así como también a propriedades eléctricas ajustables en la estructura por substitución de átomos. Este trabajo estuvo enfocado en explorar materiales activos alternativos del tipo perovskita ABX3 de metal-haluro como electrodos con el uso de precursores tales como fluoruros, cloruros, sales de sodio y metales de transición de manganeso, níquel y hierro. Dado que son materiales abundantes en la tierra con una correcta distribución geográfica, menos costo y son elementos más amigables con el medio ambiente que elementos como el cobalto y el plomo. Estos electrodos fueron explorados a partir de rutas de síntesis simples, tales como los procesos solvotermales, molienda y evaporación, por lo cual se esperaría reducir el costo de producción de las baterías. Todo eso los hace ser materiales de electrodos atractivos para la exploración principalmente en baterías de ion-litio, sin embargo, algunas evaluaciones fueron llevadas a cabo también en baterías de ion-sodio. Este estudio inició con la evaluación de materiales ternarios a partir del sistema NaCl-FeCl2. En este caso se descartó la formación de NaFeCl3 sin embargo un ternario alternativo del tipo Na2Fe3Cl8 fue estudiado. Para obtener la estructura ABX3 del tipo perovskita, el elemento de cloro fue substituido por flúor, por lo que las estructuras perovskitas de NaMnF3 y NaNiF3 fueron exploradas. En estos casos de perovskitas, diferentes morfologías y tamaños de partículas fueron estudiados por calentamiento convencional y tipo microondas, mediante la incorporación de material carbonoso, el cual interactúa con el material activo, por lo que crea una fase de control del tipo conductora continua, lo que pudo mejorar algunos desempeños electroquímicos. Adicionalmente se obtuvo un composite del tipo NaNiF3/Ni por disolución electroquímica de una espuma de níquel. Estos materiales fueron evaluados como electrodos en semi celdas de ion-litio y ion-sodio. Finalmente, un material activo del tipo híbrido orgánico- inorgánico de CH3NH3NiCl3 fue estudiado como electrodo en celdas de ion-litio mediante el proceso de reversibilidad electroquímica y proceso convencional. Este material conservó la composición química del tipo ABX3 en dónde es Cl. Aunque esta estructura está desviada de la estructura perovskita, su estabilidad se conservó reemplazando el catión inorgánico de Na+ por el catión orgánico CH3NH3+. El mecanismo de reacción en estos electrodos de materiales activo con estructuras ABX3 del tipo perovskita fueron también estudiados y se confirmó un mecanismo de reacción del tipo conversión en el caso de los materiales inorgánicos, mientras que en el material híbrido se puede presentar una combinación de mecanismos de reacción como intercalación, conversión y aleación.DoctoradoDoctora en Ingeniería de Materiales279application/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería de Materialeshttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfDeveloping of Metal-Halide Perovskite-Type Materials for electrodes of Lithium-Ion BatteriesDesarrollo de materiales tipo perovskita de metal-haluro como electrodos de baterías de ion-litioTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftAlmacenamiento de energíaEnergy storageBaterías eléctricasElectric batteriesPerovskitePerovskitaLithium-ion batteryBatería de ion-litioSodium-ion batteryBatería de ion-sodioElectrochemical devicesDispositivos electroquímicosPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/60280d67-eddd-44b7-8ee9-ed93d10313b7/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALLopezLiliana_2023_DevelopingMetalHalideLopezLiliana_2023_DevelopingMetalHalideTesis doctoralapplication/pdf21361090https://bibliotecadigital.udea.edu.co/bitstreams/623b246a-0fcb-43bb-a787-cebcef79b5c9/downloadc7c0847592aebfa439d6ac20fa43246dMD51trueAnonymousREAD2025-08-28TEXTLopezLiliana_2023_DevelopingMetalHalide.txtLopezLiliana_2023_DevelopingMetalHalide.txtExtracted texttext/plain100660https://bibliotecadigital.udea.edu.co/bitstreams/8d4d7452-e15d-4ddc-8a6d-147117072602/download5e2ac28e88260cbea967b0aea784d1aaMD54falseAnonymousREAD2025-08-28THUMBNAILLopezLiliana_2023_DevelopingMetalHalide.jpgLopezLiliana_2023_DevelopingMetalHalide.jpgGenerated Thumbnailimage/jpeg6900https://bibliotecadigital.udea.edu.co/bitstreams/ce359dd3-bb94-4020-a448-258a302de38d/download6af80f87ede5eb13fdb0ff2478cca99dMD55falseAnonymousREAD2025-08-2810495/36378oai:bibliotecadigital.udea.edu.co:10495/363782025-03-26 20:33:49.026https://creativecommons.org/licenses/by-nc-sa/4.0/embargo2025-08-28https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=