A boundary property of some subclasses of functions of bounded type in the half-plane

ABSTRACT: The paper gives the construction of the half-plane analog of the part of the factorization theory of M. M. Djrbashian – V. S. Zakaryan, where Djrbashian’s generalized fractional integral was used to establish the descriptive representations and boundary properties of meromorphic in the uni...

Full description

Autores:
Restrepo Tangarife, Joel Esteban
Jerbashian, Armen
Tipo de recurso:
Article of investigation
Fecha de publicación:
2017
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/33793
Acceso en línea:
https://hdl.handle.net/10495/33793
Palabra clave:
Cálculo
Calculus
Funciones
Functions
Problemas de valores de frontera
Boundary value problems
Factorización (finanzas)
Factoring (finance)
Problemas de valor límite
Boundary value problems
Cálculo fraccionario
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
Description
Summary:ABSTRACT: The paper gives the construction of the half-plane analog of the part of the factorization theory of M. M. Djrbashian – V. S. Zakaryan, where Djrbashian’s generalized fractional integral was used to establish the descriptive representations and boundary properties of meromorphic in the unit disc functions of the classes N{ω} contained in the Nevanlinna class N of functions of bounded type. Some results of nearly the same type are obtained for several weighted classes of meromorphic in the upper half-plane functions with bounded Tsuji characteristics by application of the Laplace transform along with an Hadamard–Liouville type generalized integro-differential operator with an unbounded integration contour, which becomes the Liouville integro-differentiation in a particular case.