Internal clustering validation method for ecosystem health identification using passive acoustic monitoring

ABSTRACT : One of the most challenging tasks in unsupervised algorithms is determining the number of clusters, for which Clustering Internal Validity Indices (CIVIs) have been developed. CIVIs are based on metrics such as compactness and separation to evaluate partitions and assist in the quest for...

Full description

Autores:
Rendon Hurtado, Nestor David
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/43809
Acceso en línea:
https://hdl.handle.net/10495/43809
Palabra clave:
Algoritmos (computadores)
Computer algorithms
Agrupamiento de términos
Terms clustering
Emisión acústica
Acoustic emission
Clustering validation indice
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/