Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables

ABSTRACT: Let X and Y be independent random variables, X having a gamma distribution with shape parameter a and Y having a non-central gamma distribution with shape and non-centrality parameters b and δ, respectively. Define Z = X/(X + 2Y ). Then, the random variable Z has a non-central beta type 3...

Full description

Autores:
Nagar, Daya Krishna
Ramírez Vanegas, Yeison Arley
Tipo de recurso:
Article of investigation
Fecha de publicación:
2013
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/31265
Acceso en línea:
https://hdl.handle.net/10495/31265
https://journaljamcs.com/index.php/JAMCS/article/view/22421
Palabra clave:
Variables aleatorias
Random variables
Análisis espectral
Spectrum analysis
Distribución de energía espectral
Spectral energy distribution
Funciones hipergeométricas
Functions, hypergeometric
Funciones de densidad
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_62359f1d9f4c004cc36406cbfdb3c441
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/31265
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables
title Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables
spellingShingle Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables
Variables aleatorias
Random variables
Análisis espectral
Spectrum analysis
Distribución de energía espectral
Spectral energy distribution
Funciones hipergeométricas
Functions, hypergeometric
Funciones de densidad
title_short Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables
title_full Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables
title_fullStr Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables
title_full_unstemmed Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables
title_sort Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables
dc.creator.fl_str_mv Nagar, Daya Krishna
Ramírez Vanegas, Yeison Arley
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Ramírez Vanegas, Yeison Arley
dc.contributor.researchgroup.spa.fl_str_mv Análisis Multivariado
dc.subject.lemb.none.fl_str_mv Variables aleatorias
Random variables
Análisis espectral
Spectrum analysis
Distribución de energía espectral
Spectral energy distribution
Funciones hipergeométricas
Functions, hypergeometric
topic Variables aleatorias
Random variables
Análisis espectral
Spectrum analysis
Distribución de energía espectral
Spectral energy distribution
Funciones hipergeométricas
Functions, hypergeometric
Funciones de densidad
dc.subject.proposal.spa.fl_str_mv Funciones de densidad
description ABSTRACT: Let X and Y be independent random variables, X having a gamma distribution with shape parameter a and Y having a non-central gamma distribution with shape and non-centrality parameters b and δ, respectively. Define Z = X/(X + 2Y ). Then, the random variable Z has a non-central beta type 3 distribution, Z ∼ NCB3(a, b; δ). In this article we derive density functions of sum, difference, product and quotient of two independent random variables each having non central beta type 3 distribution. These density functions are expressed in series involving first hypergeometric function of Appell.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2022-10-12T14:09:40Z
dc.date.available.none.fl_str_mv 2022-10-12T14:09:40Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Nagar, D. y Ramírez-Vanegas, Y. (2013). Distribuciones de Suma, Diferencia, Producto y Cociente de Variables Beta Tipo 3 No Centrales Independientes. Revista de Avances en Matemáticas e Informática , 3 (1), 12-23. https://doi.org/10.9734/BJMCS/2013/1895
dc.identifier.issn.none.fl_str_mv 2231-0851
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/31265
dc.identifier.doi.none.fl_str_mv 10.9734/BJMCS/2013/1895
dc.identifier.url.spa.fl_str_mv https://journaljamcs.com/index.php/JAMCS/article/view/22421
identifier_str_mv Nagar, D. y Ramírez-Vanegas, Y. (2013). Distribuciones de Suma, Diferencia, Producto y Cociente de Variables Beta Tipo 3 No Centrales Independientes. Revista de Avances en Matemáticas e Informática , 3 (1), 12-23. https://doi.org/10.9734/BJMCS/2013/1895
2231-0851
10.9734/BJMCS/2013/1895
url https://hdl.handle.net/10495/31265
https://journaljamcs.com/index.php/JAMCS/article/view/22421
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 23
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.spa.fl_str_mv 12
dc.relation.citationvolume.spa.fl_str_mv 22
dc.relation.ispartofjournal.spa.fl_str_mv British Journal of Mathematics & Computer Science
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Sciencedomain International
dc.publisher.place.spa.fl_str_mv India
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/f7fb7357-0c85-40af-94da-4e986e924c92/download
https://bibliotecadigital.udea.edu.co/bitstreams/85b02303-65d0-4c55-ab6b-bcae5d519f33/download
https://bibliotecadigital.udea.edu.co/bitstreams/41fa4c4a-1e9e-4714-915b-bd8965e05362/download
https://bibliotecadigital.udea.edu.co/bitstreams/a018dbe7-6aa3-4197-ac9b-b008494b937c/download
https://bibliotecadigital.udea.edu.co/bitstreams/ade193eb-b100-4414-a4bf-b264c97d63ee/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
5352f6d586c622189888fc5b36e7a968
1646d1f6b96dbbbc38035efc9239ac9c
d4b872456f2631c374d1b3906ee118ea
6f85efd0f0deff962149cbff6a7bc5a4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052571789099008
spelling Nagar, Daya KrishnaRamírez Vanegas, Yeison ArleyAnálisis Multivariado2022-10-12T14:09:40Z2022-10-12T14:09:40Z2013Nagar, D. y Ramírez-Vanegas, Y. (2013). Distribuciones de Suma, Diferencia, Producto y Cociente de Variables Beta Tipo 3 No Centrales Independientes. Revista de Avances en Matemáticas e Informática , 3 (1), 12-23. https://doi.org/10.9734/BJMCS/2013/18952231-0851https://hdl.handle.net/10495/3126510.9734/BJMCS/2013/1895https://journaljamcs.com/index.php/JAMCS/article/view/22421ABSTRACT: Let X and Y be independent random variables, X having a gamma distribution with shape parameter a and Y having a non-central gamma distribution with shape and non-centrality parameters b and δ, respectively. Define Z = X/(X + 2Y ). Then, the random variable Z has a non-central beta type 3 distribution, Z ∼ NCB3(a, b; δ). In this article we derive density functions of sum, difference, product and quotient of two independent random variables each having non central beta type 3 distribution. These density functions are expressed in series involving first hypergeometric function of Appell.COL000053212application/pdfengSciencedomain InternationalIndiahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variablesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionVariables aleatoriasRandom variablesAnálisis espectralSpectrum analysisDistribución de energía espectralSpectral energy distributionFunciones hipergeométricasFunctions, hypergeometricFunciones de densidad2331222British Journal of Mathematics & Computer SciencePublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/f7fb7357-0c85-40af-94da-4e986e924c92/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALNagarDaya_2013_Distributions-Sum.pdfNagarDaya_2013_Distributions-Sum.pdfArtículo de investigaciónapplication/pdf357159https://bibliotecadigital.udea.edu.co/bitstreams/85b02303-65d0-4c55-ab6b-bcae5d519f33/download5352f6d586c622189888fc5b36e7a968MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/41fa4c4a-1e9e-4714-915b-bd8965e05362/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADTEXTNagarDaya_2013_Distributions-Sum.pdf.txtNagarDaya_2013_Distributions-Sum.pdf.txtExtracted texttext/plain26609https://bibliotecadigital.udea.edu.co/bitstreams/a018dbe7-6aa3-4197-ac9b-b008494b937c/downloadd4b872456f2631c374d1b3906ee118eaMD54falseAnonymousREADTHUMBNAILNagarDaya_2013_Distributions-Sum.pdf.jpgNagarDaya_2013_Distributions-Sum.pdf.jpgGenerated Thumbnailimage/jpeg11475https://bibliotecadigital.udea.edu.co/bitstreams/ade193eb-b100-4414-a4bf-b264c97d63ee/download6f85efd0f0deff962149cbff6a7bc5a4MD55falseAnonymousREAD10495/31265oai:bibliotecadigital.udea.edu.co:10495/312652025-03-27 00:28:54.375http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=