Distributions of sum, difference, product and quotient of independent noncentral beta type 3 variables
ABSTRACT: Let X and Y be independent random variables, X having a gamma distribution with shape parameter a and Y having a non-central gamma distribution with shape and non-centrality parameters b and δ, respectively. Define Z = X/(X + 2Y ). Then, the random variable Z has a non-central beta type 3...
- Autores:
-
Nagar, Daya Krishna
Ramírez Vanegas, Yeison Arley
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2013
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/31265
- Acceso en línea:
- https://hdl.handle.net/10495/31265
https://journaljamcs.com/index.php/JAMCS/article/view/22421
- Palabra clave:
- Variables aleatorias
Random variables
Análisis espectral
Spectrum analysis
Distribución de energía espectral
Spectral energy distribution
Funciones hipergeométricas
Functions, hypergeometric
Funciones de densidad
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| Summary: | ABSTRACT: Let X and Y be independent random variables, X having a gamma distribution with shape parameter a and Y having a non-central gamma distribution with shape and non-centrality parameters b and δ, respectively. Define Z = X/(X + 2Y ). Then, the random variable Z has a non-central beta type 3 distribution, Z ∼ NCB3(a, b; δ). In this article we derive density functions of sum, difference, product and quotient of two independent random variables each having non central beta type 3 distribution. These density functions are expressed in series involving first hypergeometric function of Appell. |
|---|
