Weak and strong gravity effects in astrophysics and cosmology
ABSTRACT: Gravity is fundamental to formulate the standard cosmological model and understand smaller-scale astrophysical processes. This thesis studies different problems involving weak and strong gravitational effects in astrophysics and cosmology. In the strong gravity regime, we use a neural netw...
- Autores:
-
Santa Vélez, Camilo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/29735
- Acceso en línea:
- https://hdl.handle.net/10495/29735
- Palabra clave:
- Perturbation (Quantum dynamics)
Gravitational waves
Luminosity distance
Artificial Intelligence
Astrophysics
Cosmology
Deep learning
Aprendizaje profundo
Perturbación (Dinámica cuántica)
Inteligencia artificial
Astrofísica
Cosmología
Cosmological perturbation theory
Turn around radius
http://id.loc.gov/authorities/subjects/sh85100182
http://id.loc.gov/authorities/subjects/sh85056562
http://id.loc.gov/authorities/subjects/sh2003003637
http://id.loc.gov/authorities/subjects/sh85008180
http://id.loc.gov/authorities/subjects/sh85009032
http://id.loc.gov/authorities/subjects/sh85033169
http://id.nlm.nih.gov/mesh/D000077321
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/2.5/co/
| id |
UDEA2_61a665d2494871dc6744cccc40d026cb |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/29735 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Weak and strong gravity effects in astrophysics and cosmology |
| title |
Weak and strong gravity effects in astrophysics and cosmology |
| spellingShingle |
Weak and strong gravity effects in astrophysics and cosmology Perturbation (Quantum dynamics) Gravitational waves Luminosity distance Artificial Intelligence Astrophysics Cosmology Deep learning Aprendizaje profundo Perturbación (Dinámica cuántica) Inteligencia artificial Astrofísica Cosmología Cosmological perturbation theory Turn around radius http://id.loc.gov/authorities/subjects/sh85100182 http://id.loc.gov/authorities/subjects/sh85056562 http://id.loc.gov/authorities/subjects/sh2003003637 http://id.loc.gov/authorities/subjects/sh85008180 http://id.loc.gov/authorities/subjects/sh85009032 http://id.loc.gov/authorities/subjects/sh85033169 http://id.nlm.nih.gov/mesh/D000077321 |
| title_short |
Weak and strong gravity effects in astrophysics and cosmology |
| title_full |
Weak and strong gravity effects in astrophysics and cosmology |
| title_fullStr |
Weak and strong gravity effects in astrophysics and cosmology |
| title_full_unstemmed |
Weak and strong gravity effects in astrophysics and cosmology |
| title_sort |
Weak and strong gravity effects in astrophysics and cosmology |
| dc.creator.fl_str_mv |
Santa Vélez, Camilo |
| dc.contributor.advisor.none.fl_str_mv |
Enea Romano, Antonio |
| dc.contributor.author.none.fl_str_mv |
Santa Vélez, Camilo |
| dc.contributor.researchgroup.spa.fl_str_mv |
COSMOGRAV |
| dc.subject.lcsh.none.fl_str_mv |
Perturbation (Quantum dynamics) Gravitational waves Luminosity distance Artificial Intelligence Astrophysics Cosmology |
| topic |
Perturbation (Quantum dynamics) Gravitational waves Luminosity distance Artificial Intelligence Astrophysics Cosmology Deep learning Aprendizaje profundo Perturbación (Dinámica cuántica) Inteligencia artificial Astrofísica Cosmología Cosmological perturbation theory Turn around radius http://id.loc.gov/authorities/subjects/sh85100182 http://id.loc.gov/authorities/subjects/sh85056562 http://id.loc.gov/authorities/subjects/sh2003003637 http://id.loc.gov/authorities/subjects/sh85008180 http://id.loc.gov/authorities/subjects/sh85009032 http://id.loc.gov/authorities/subjects/sh85033169 http://id.nlm.nih.gov/mesh/D000077321 |
| dc.subject.mesh.none.fl_str_mv |
Deep learning |
| dc.subject.decs.none.fl_str_mv |
Aprendizaje profundo |
| dc.subject.lemb.none.fl_str_mv |
Perturbación (Dinámica cuántica) Inteligencia artificial Astrofísica Cosmología |
| dc.subject.proposal.spa.fl_str_mv |
Cosmological perturbation theory Turn around radius |
| dc.subject.lcshuri.none.fl_str_mv |
http://id.loc.gov/authorities/subjects/sh85100182 http://id.loc.gov/authorities/subjects/sh85056562 http://id.loc.gov/authorities/subjects/sh2003003637 http://id.loc.gov/authorities/subjects/sh85008180 http://id.loc.gov/authorities/subjects/sh85009032 http://id.loc.gov/authorities/subjects/sh85033169 |
| dc.subject.meshuri.none.fl_str_mv |
http://id.nlm.nih.gov/mesh/D000077321 |
| description |
ABSTRACT: Gravity is fundamental to formulate the standard cosmological model and understand smaller-scale astrophysical processes. This thesis studies different problems involving weak and strong gravitational effects in astrophysics and cosmology. In the strong gravity regime, we use a neural network to reconstruct the parameters of a binary black hole merger from its gravitational wave signal. Effective one-body numerical relativity simulations are used to generate a template bank of gravitational waves spectrograms. This dataset is then used to train a neural network to estimate the masses of the black holes. In the weak gravity regime, we study static spherically symmetric (SSS) metrics as generalizations of the de Sitter metric and find their form as perturbations of the FRW Universe using gauge-invariant variables. We then apply these results to compute the turnaround radius (TAR) and the gravitational stability mass (GSM) to constrain scalar-tensor gravity theories with observational data. In the last part, we investigate the problem of reconstructing the density field from its weak lensing effects on the luminosity distance. First, we simulate many random configurations of cosmic structure, compute their effects on the luminosity distance using perturbation theory, and finally develop a neural network to reconstruct the density and velocity fields from the luminosity distance. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-07-14T15:58:12Z |
| dc.date.available.none.fl_str_mv |
2022-07-14T15:58:12Z |
| dc.date.issued.none.fl_str_mv |
2022 |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Doctorado |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/29735 |
| url |
https://hdl.handle.net/10495/29735 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.accessrights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO) |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ https://creativecommons.org/licenses/by-nc-sa/4.0/ Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
102 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín - Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Exactas y Naturales. Física |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/51a18c5a-0a93-4938-bbdd-81bd15c45551/download https://bibliotecadigital.udea.edu.co/bitstreams/c2f7335e-9e5a-4734-b7e5-07793e95edd6/download https://bibliotecadigital.udea.edu.co/bitstreams/c8845c03-cbd3-4adc-b208-7f0eacc79e61/download https://bibliotecadigital.udea.edu.co/bitstreams/51e65246-bd5f-42c2-85a3-e2a449384432/download |
| bitstream.checksum.fl_str_mv |
e732187b3bd39c93f2c97f217e93cfcf 8a4605be74aa9ea9d79846c1fba20a33 9377ff1dfef52053114f6d35b685c2bb 0799e42a08954896d97969e8c8df0287 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052179145621504 |
| spelling |
Enea Romano, AntonioSanta Vélez, CamiloCOSMOGRAV2022-07-14T15:58:12Z2022-07-14T15:58:12Z2022https://hdl.handle.net/10495/29735ABSTRACT: Gravity is fundamental to formulate the standard cosmological model and understand smaller-scale astrophysical processes. This thesis studies different problems involving weak and strong gravitational effects in astrophysics and cosmology. In the strong gravity regime, we use a neural network to reconstruct the parameters of a binary black hole merger from its gravitational wave signal. Effective one-body numerical relativity simulations are used to generate a template bank of gravitational waves spectrograms. This dataset is then used to train a neural network to estimate the masses of the black holes. In the weak gravity regime, we study static spherically symmetric (SSS) metrics as generalizations of the de Sitter metric and find their form as perturbations of the FRW Universe using gauge-invariant variables. We then apply these results to compute the turnaround radius (TAR) and the gravitational stability mass (GSM) to constrain scalar-tensor gravity theories with observational data. In the last part, we investigate the problem of reconstructing the density field from its weak lensing effects on the luminosity distance. First, we simulate many random configurations of cosmic structure, compute their effects on the luminosity distance using perturbation theory, and finally develop a neural network to reconstruct the density and velocity fields from the luminosity distance.DoctoradoDoctor en Física102application/pdfengUniversidad de AntioquiaMedellín - ColombiaFacultad de Ciencias Exactas y Naturales. Físicahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)http://purl.org/coar/access_right/c_abf2Perturbation (Quantum dynamics)Gravitational wavesLuminosity distanceArtificial IntelligenceAstrophysicsCosmologyDeep learningAprendizaje profundoPerturbación (Dinámica cuántica)Inteligencia artificialAstrofísicaCosmologíaCosmological perturbation theoryTurn around radiushttp://id.loc.gov/authorities/subjects/sh85100182http://id.loc.gov/authorities/subjects/sh85056562http://id.loc.gov/authorities/subjects/sh2003003637http://id.loc.gov/authorities/subjects/sh85008180http://id.loc.gov/authorities/subjects/sh85009032http://id.loc.gov/authorities/subjects/sh85033169http://id.nlm.nih.gov/mesh/D000077321Weak and strong gravity effects in astrophysics and cosmologyTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftPublicationORIGINALSantaCamilo_2021_WeakStrongGravity.pdfSantaCamilo_2021_WeakStrongGravity.pdfTesis doctoralapplication/pdf1782789https://bibliotecadigital.udea.edu.co/bitstreams/51a18c5a-0a93-4938-bbdd-81bd15c45551/downloade732187b3bd39c93f2c97f217e93cfcfMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/c2f7335e-9e5a-4734-b7e5-07793e95edd6/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTSantaCamilo_2021_WeakStrongGravity.pdf.txtSantaCamilo_2021_WeakStrongGravity.pdf.txtExtracted texttext/plain103883https://bibliotecadigital.udea.edu.co/bitstreams/c8845c03-cbd3-4adc-b208-7f0eacc79e61/download9377ff1dfef52053114f6d35b685c2bbMD55falseAnonymousREADTHUMBNAILSantaCamilo_2021_WeakStrongGravity.pdf.jpgSantaCamilo_2021_WeakStrongGravity.pdf.jpgGenerated Thumbnailimage/jpeg6366https://bibliotecadigital.udea.edu.co/bitstreams/51e65246-bd5f-42c2-85a3-e2a449384432/download0799e42a08954896d97969e8c8df0287MD56falseAnonymousREAD10495/29735oai:bibliotecadigital.udea.edu.co:10495/297352025-03-26 18:10:37.635http://creativecommons.org/licenses/by-nc-sa/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
