Aerodynamic and Propulsive Efficiency Optimization of an Aircraft Distributed Propulsion System

Con el objetivo de comprender mejor la interacción entre los distintos parámetros geométricos en configuraciones ala-hélice dentro de sistemas de propulsión distribuida, se desarrolla un código basado en la Teoría de Momento de Elemento de Hélice (BEMT) que permite optimizar el perfil de torsión de...

Full description

Autores:
Ramírez Guevara, Daniel Esteban
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/48214
Acceso en línea:
https://hdl.handle.net/10495/48214
Palabra clave:
Airplanes - Distributed propulsion
Aviones - Propulsión distribuida
Airplanes - Models - Propellers
Aviones - Modelos - Hélices
Lift (Aerodynamics)
Sustentación (Aerodinámica)
Propulsion systems
Sistemas de propulsión
Computational fluid dynamics
Dinámica de fluidos computacional
Aerodynamics - Mathematical models
Aerodinámica - Modelos matemáticos
Mathematical optimization
Optimización matemática
http://id.loc.gov/authorities/subjects/sh2014000182
http://id.loc.gov/authorities/subjects/sh98004772
http://id.loc.gov/authorities/subjects/sh85076855
http://id.loc.gov/authorities/subjects/sh2003010905
http://id.loc.gov/authorities/subjects/sh2007008173
http://id.loc.gov/authorities/subjects/sh2009113813
http://id.loc.gov/authorities/subjects/sh85082127
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_5eb1e4f049f490d4a299b415d0546e02
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/48214
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.eng.fl_str_mv Aerodynamic and Propulsive Efficiency Optimization of an Aircraft Distributed Propulsion System
title Aerodynamic and Propulsive Efficiency Optimization of an Aircraft Distributed Propulsion System
spellingShingle Aerodynamic and Propulsive Efficiency Optimization of an Aircraft Distributed Propulsion System
Airplanes - Distributed propulsion
Aviones - Propulsión distribuida
Airplanes - Models - Propellers
Aviones - Modelos - Hélices
Lift (Aerodynamics)
Sustentación (Aerodinámica)
Propulsion systems
Sistemas de propulsión
Computational fluid dynamics
Dinámica de fluidos computacional
Aerodynamics - Mathematical models
Aerodinámica - Modelos matemáticos
Mathematical optimization
Optimización matemática
http://id.loc.gov/authorities/subjects/sh2014000182
http://id.loc.gov/authorities/subjects/sh98004772
http://id.loc.gov/authorities/subjects/sh85076855
http://id.loc.gov/authorities/subjects/sh2003010905
http://id.loc.gov/authorities/subjects/sh2007008173
http://id.loc.gov/authorities/subjects/sh2009113813
http://id.loc.gov/authorities/subjects/sh85082127
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
title_short Aerodynamic and Propulsive Efficiency Optimization of an Aircraft Distributed Propulsion System
title_full Aerodynamic and Propulsive Efficiency Optimization of an Aircraft Distributed Propulsion System
title_fullStr Aerodynamic and Propulsive Efficiency Optimization of an Aircraft Distributed Propulsion System
title_full_unstemmed Aerodynamic and Propulsive Efficiency Optimization of an Aircraft Distributed Propulsion System
title_sort Aerodynamic and Propulsive Efficiency Optimization of an Aircraft Distributed Propulsion System
dc.creator.fl_str_mv Ramírez Guevara, Daniel Esteban
dc.contributor.advisor.none.fl_str_mv Hidalgo López, Diego Francisco
dc.contributor.author.none.fl_str_mv Ramírez Guevara, Daniel Esteban
dc.subject.lcsh.none.fl_str_mv Airplanes - Distributed propulsion
Aviones - Propulsión distribuida
Airplanes - Models - Propellers
Aviones - Modelos - Hélices
Lift (Aerodynamics)
Sustentación (Aerodinámica)
Propulsion systems
Sistemas de propulsión
Computational fluid dynamics
Dinámica de fluidos computacional
Aerodynamics - Mathematical models
Aerodinámica - Modelos matemáticos
Mathematical optimization
Optimización matemática
topic Airplanes - Distributed propulsion
Aviones - Propulsión distribuida
Airplanes - Models - Propellers
Aviones - Modelos - Hélices
Lift (Aerodynamics)
Sustentación (Aerodinámica)
Propulsion systems
Sistemas de propulsión
Computational fluid dynamics
Dinámica de fluidos computacional
Aerodynamics - Mathematical models
Aerodinámica - Modelos matemáticos
Mathematical optimization
Optimización matemática
http://id.loc.gov/authorities/subjects/sh2014000182
http://id.loc.gov/authorities/subjects/sh98004772
http://id.loc.gov/authorities/subjects/sh85076855
http://id.loc.gov/authorities/subjects/sh2003010905
http://id.loc.gov/authorities/subjects/sh2007008173
http://id.loc.gov/authorities/subjects/sh2009113813
http://id.loc.gov/authorities/subjects/sh85082127
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2014000182
http://id.loc.gov/authorities/subjects/sh98004772
http://id.loc.gov/authorities/subjects/sh85076855
http://id.loc.gov/authorities/subjects/sh2003010905
http://id.loc.gov/authorities/subjects/sh2007008173
http://id.loc.gov/authorities/subjects/sh2009113813
http://id.loc.gov/authorities/subjects/sh85082127
dc.subject.ods.none.fl_str_mv ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
description Con el objetivo de comprender mejor la interacción entre los distintos parámetros geométricos en configuraciones ala-hélice dentro de sistemas de propulsión distribuida, se desarrolla un código basado en la Teoría de Momento de Elemento de Hélice (BEMT) que permite optimizar el perfil de torsión de la hélice, manteniendo fija la planta de pala, con el fin de maximizar la relación entre velocidad inducida y potencia. Como punto de comparación, se utilizan datos del perfil de velocidad inducida de la hélice empleada en el proyecto X-57 de la NASA, contrastando su efecto sobre la sustentación con el de la hélice optimizada mediante BEMT, modelada como un disco actuador con distribución radial de empuje. Se lleva a cabo una campaña de simulaciones CFD 2.5D en estado estable en la que se varían la ubicación y la velocidad inducida promedio de ambos propulsores. Se evidencia que el propulsor optimizado mejora la eficiencia aerodinámica en mayor medida en comparación con el diseño de la NASA.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-12T21:24:52Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.citation.none.fl_str_mv Ram´ırez Guevara, D. E. “Aerodynamic and propulsive efficiency optimization of an aircraft distributed propulsion system.”, Trabajo de Grado, Ingenier´ıa Aeroespacial, Universidad de Antioquia, Carmen de Viboral, 2025
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/48214
identifier_str_mv Ram´ırez Guevara, D. E. “Aerodynamic and propulsive efficiency optimization of an aircraft distributed propulsion system.”, Trabajo de Grado, Ingenier´ıa Aeroespacial, Universidad de Antioquia, Carmen de Viboral, 2025
url https://hdl.handle.net/10495/48214
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1] V. Masson-Delmotte, P. Zhai, A. Pirani, S. Connors, C. P´ean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews, T. Maycock, T. Waterfield, O. Yelek¸ci, R. Yu, and B. Zhou, Summary for Policymakers. Cambridge, UK and New York, NY: Cambridge University Press, 2021, iPCC.
[2] Airlines for America, “Innovative Industry and Government Action to Achieve Net-Zero Carbon Emissions,” https://www.airlines.org/wp-content/uploads/2021/05/A4A-Climate-Change-Commitment-Flight-Path-to-Net-ZeroFINAL-3-30-21.pdf, 2021, accessed: 2025-06-21.
[3] National Academy of Engineering, Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions. U.S. National Academy of Engineering, 2016. [Online]. Available: https://doi.org/10.17226/23490
[4] International Civil Aviation Organization (ICAO), “2022 Environmental Report,” https://www.icao.int/environmental-protection/Documents/EnvironmentalReports/2022/ICAO%20ENV%20Report%202022%20F4.pdf, 2022, accessed: 2025-06-21.
[5] L. M. Ciaramicoli, “Aerodynamic Investigation of Distributed Propellers as a High-lift System,” Master’s thesis, University of Sao Paulo, 2024.
[6] Electra.aero, “Electra – Ultra-Short Takeoff and Landing Aircraft,” https://www.electra.aero/, 2024, [Online; accessed 6-July-2025].
[7] B. Adu-Gyamfi and C. Good, “Electric aviation: A review of concepts and enabling technologies,” Transportation Engineering, 2022.
[8] J. Viken and W. Li, “X-57 Structural Analysis, Wing Design, & Testing (Statics),” Presentation, 2024, presented at ASTM Committee F44 Meeting.
[9] D. Perdolt and M. e. a. Thiele, “Comparison of Multi-Fidelity Rotor Analysis Tools for Transitional and Low Speed Flight Regimes,” Deutscher Luft- und Raumfahrtkongress, 2021.
[10] S. S. Chauhan and J. R. R. A. Martins, “RANS-Based Aerodynamic Shape Optimization of a Wing with a Propeller in Front of the Wingtip,” Aerospace, 2024.
[11] J. D. Anderson, Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill, 1995.
[12] OpenFOAM, “Turbulence modeling in OpenFOAM: Guided Tutorials,” Online tutorial PDF, 2021.
[13] F. Moens, “A Fast Aerodynamic Model for Aircraft Multidisciplinary Design and Optimization Process,” Aerospace, vol. 10, no. 1, p. 7, December 2022. [Online]. Available: https://www.mdpi.com/2226-4310/10/1/7
[14] P. Spalart and S. e. a. Deck, “A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities,” Theoretical and Computational Fluid Dynamics, 2006.
[15] J. Blazek, Computational Fluid Dynamics: Principles and Applications, 3rd ed. Elsevier, 2015.
[16] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed. Pearson Education, 2007.
[17] S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation / Taylor & Francis, 1980.
[18] J. H. Ferziger, M. Peri´c, and R. L. Street, Computational Methods for Fluid Dynamics, 4th ed. Springer, 2019.
[19] H. Glauert, The Elements of Aerofoil and Airscrew Theory. Cambridge: Cambridge University Press, 1983.
[20] A. Fahad, “Measurement of Axial Induction Factor for a Model Wind Turbine,” Master’s thesis, University of Saskatchewan, 2012.
[21] D. Zhao, N. Han, E. Goh, J. Cater, and A. Reinecke, Wind Turbines and Aerodynamics Energy Harvesters. McGraw-Hill, 1995.
[22] G.-H. Cottet and P. D. Koumoutsakos, Vortex Methods: Theory and Practice. Cambridge University Press, 2000.
[23] E. Alvarez and A. Ning, “High-Fidelity Modeling of Multirotor Aerodynamic Interactions for Aircraft Design,” AIAA, 2020.
[24] GoEngineer. (2016, Dec.) Solidworks flow simulation sliding mesh explained. GoEngineer. Accessed June 27, 2025. [Online]. Available: https://www.goengineer.com/blog/solidworks-flow-simulation-sliding-mesh
[25] H. Kutty and P. Rajendran, “3D CFD Simulation and Experimental Validation of Small APC Slow Flyer Propeller Blade,” Aerospace, vol. 4, no. 1, p. 10, 2017. [Online]. Available: https://www.mdpi.com/2226-4310/4/1/10
[26] M. Morgut and E. Nobile, “Influence of Grid Type and Turbulence Model on the Numerical Prediction of the Flow around Marine Propellers Working in Uniform Inflow,” Ocean Engineering, vol. 42, pp. 26–34, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801812000243
[27] P. Aref and M. e. a. Ghoreyshi, “Computational Study of Propeller–Wing Aerodynamic Interaction,” Aerospace, 2018.
[28] J. G. Leishman, Principles of Helicopter Aerodynamics, 2nd ed., ser. Cambridge Aerospace Series. Cambridge: Cambridge University Press, 2006, vol. 12.
[29] H. Kellerman and S. e. a. Fuhrmann, “Design of a Battery Cooling System for Hybrid Electric Aircraft,” Journal of Propulsion and Power, 2022.
[30] L. Xiao and Y. e. a. Tan, “Distributed Hybrid Electric Propulsion Aircraft Design Based on Convex Optimized Power Allocation Management,” Aerospace, 2024.
[31] G. P. G. da Silva, “Experimental assessment of aerodynamic and aeroacoustic interaction effects of wingtip-mounted propellers,” Ph.D. dissertation, University of Sao Paulo, 2023.
[32] G. Resende and V. e. a. Malatesta, “Study of effects on the wing’s aerodynamic characteristics due to distributed propulsion over wingspan,” ICAS, 2022.
[33] M. Patterson, N. Borer, and B. German, “A Simple Method for High-Lift Propeller Conceptual Design,” Presentation, 2016.
[34] N. Hariharan, A. Wissink, M. Potsdam, and R. Strawn, “First-Principles Physics-Based Rotorcraft Flowfield Simulation Using HPCMP CREATE-AV Helios,” Computing in Science & Engineering, vol. 18, no. 6, pp. 19–26, Nov. 2016.
[35] B. Wong, “A new derivative-free optimization method: Gaussian Crunching Search,” Optimization and Control, 2023.
[36] J. Heeg and B. e. a. Stanford, “Whirl Flutter and the development of the NASA X-57 Maxwell,” IFASD, 2019.
[37] S. F. Hoerner, Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Brick Town, NJ: Hoerner Fluid Dynamics, 1965, second printing.
[38] M. Khalid, “A numerical study of the subgrid-scale fluid motion in turbulent flows,” Master’s thesis, Memorial University of Newfoundland, 2021.
[39] S. H. and G. K., Boundary-Layer Theory, 9th ed. Berlin: Springer, 2016.
[40] J. D. Anderson, Fundamentals of Aerodynamics, 5th ed. McGraw-Hill Education, 2010.
[41] Embry-Riddle Aeronautical University. (2020) Thin airfoil theory. Embry-Riddle Aeronautical University. Accessed: 2025-06-25. [Online]. Available: https://eaglepubs.erau.edu/introductiontoaerospaceflightvehicles/chapter/thin-airfoil-theory/
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercialShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercialShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 124 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Ingeniería Aeroespacial
dc.publisher.place.none.fl_str_mv El Carmen de Viboral, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.branch.none.fl_str_mv Campus El Carmen de Viboral
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/acba6033-5d6a-454a-9f30-d6548b3c9038/download
https://bibliotecadigital.udea.edu.co/bitstreams/2de4c99a-79fc-4139-8e5c-5acabf3469a5/download
https://bibliotecadigital.udea.edu.co/bitstreams/47e241b6-4cc4-4411-a372-997c2c42d429/download
https://bibliotecadigital.udea.edu.co/bitstreams/e8028382-74a2-42f8-ab7b-dd6f241017a7/download
https://bibliotecadigital.udea.edu.co/bitstreams/136987b9-5666-434e-9a7b-d2174f4c38f9/download
bitstream.checksum.fl_str_mv 3b6ce8e9e36c89875e8cf39962fe8920
b76e7a76e24cf2f94b3ce0ae5ed275d0
ebbdfc750baf2257f02616cbd4415298
9697570cbd9719f3a3bdbd58e39444be
76433342d34cb3679cfb5e5eb9608214
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052437376335872
spelling Hidalgo López, Diego FranciscoRamírez Guevara, Daniel Esteban2025-11-12T21:24:52Z2025Ram´ırez Guevara, D. E. “Aerodynamic and propulsive efficiency optimization of an aircraft distributed propulsion system.”, Trabajo de Grado, Ingenier´ıa Aeroespacial, Universidad de Antioquia, Carmen de Viboral, 2025https://hdl.handle.net/10495/48214Con el objetivo de comprender mejor la interacción entre los distintos parámetros geométricos en configuraciones ala-hélice dentro de sistemas de propulsión distribuida, se desarrolla un código basado en la Teoría de Momento de Elemento de Hélice (BEMT) que permite optimizar el perfil de torsión de la hélice, manteniendo fija la planta de pala, con el fin de maximizar la relación entre velocidad inducida y potencia. Como punto de comparación, se utilizan datos del perfil de velocidad inducida de la hélice empleada en el proyecto X-57 de la NASA, contrastando su efecto sobre la sustentación con el de la hélice optimizada mediante BEMT, modelada como un disco actuador con distribución radial de empuje. Se lleva a cabo una campaña de simulaciones CFD 2.5D en estado estable en la que se varían la ubicación y la velocidad inducida promedio de ambos propulsores. Se evidencia que el propulsor optimizado mejora la eficiencia aerodinámica en mayor medida en comparación con el diseño de la NASA.In order to better understand the interaction between various geometric parameters in wing–propeller configurations within distributed propulsion systems, a code based on Blade Element Momentum Theory (BEMT) is developed to optimize the propeller’s twist distribution while keeping the blade planform fixed, with the aim of maximizing the ratio of induced velocity to power. As a point of comparison, data from the induced velocity profile of the propeller used in NASA’s X-57 project is employed, and its effect on lift is contrasted with that of the BEMToptimized propeller, modeled as an actuator disk with a radial thrust distribution. A 2.5D steady-state CFD simulation campaign is carried out, in which both the location and the average induced velocity of the two propulsors are varied. It is evidenced that the optimized propeller improves the aerodynamic efficiency more than the NASA proposed design.PregradoIngeniero Aeroespacial124 páginasapplication/pdfengUniversidad de AntioquiaIngeniería AeroespacialEl Carmen de Viboral, ColombiaFacultad de IngenieríaCampus El Carmen de Viboralhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercialShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Airplanes - Distributed propulsionAviones - Propulsión distribuidaAirplanes - Models - PropellersAviones - Modelos - HélicesLift (Aerodynamics)Sustentación (Aerodinámica)Propulsion systemsSistemas de propulsiónComputational fluid dynamicsDinámica de fluidos computacionalAerodynamics - Mathematical modelsAerodinámica - Modelos matemáticosMathematical optimizationOptimización matemáticahttp://id.loc.gov/authorities/subjects/sh2014000182http://id.loc.gov/authorities/subjects/sh98004772http://id.loc.gov/authorities/subjects/sh85076855http://id.loc.gov/authorities/subjects/sh2003010905http://id.loc.gov/authorities/subjects/sh2007008173http://id.loc.gov/authorities/subjects/sh2009113813http://id.loc.gov/authorities/subjects/sh85082127ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovaciónAerodynamic and Propulsive Efficiency Optimization of an Aircraft Distributed Propulsion SystemTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draft[1] V. Masson-Delmotte, P. Zhai, A. Pirani, S. Connors, C. P´ean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews, T. Maycock, T. Waterfield, O. Yelek¸ci, R. Yu, and B. Zhou, Summary for Policymakers. Cambridge, UK and New York, NY: Cambridge University Press, 2021, iPCC.[2] Airlines for America, “Innovative Industry and Government Action to Achieve Net-Zero Carbon Emissions,” https://www.airlines.org/wp-content/uploads/2021/05/A4A-Climate-Change-Commitment-Flight-Path-to-Net-ZeroFINAL-3-30-21.pdf, 2021, accessed: 2025-06-21.[3] National Academy of Engineering, Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions. U.S. National Academy of Engineering, 2016. [Online]. Available: https://doi.org/10.17226/23490[4] International Civil Aviation Organization (ICAO), “2022 Environmental Report,” https://www.icao.int/environmental-protection/Documents/EnvironmentalReports/2022/ICAO%20ENV%20Report%202022%20F4.pdf, 2022, accessed: 2025-06-21.[5] L. M. Ciaramicoli, “Aerodynamic Investigation of Distributed Propellers as a High-lift System,” Master’s thesis, University of Sao Paulo, 2024.[6] Electra.aero, “Electra – Ultra-Short Takeoff and Landing Aircraft,” https://www.electra.aero/, 2024, [Online; accessed 6-July-2025].[7] B. Adu-Gyamfi and C. Good, “Electric aviation: A review of concepts and enabling technologies,” Transportation Engineering, 2022.[8] J. Viken and W. Li, “X-57 Structural Analysis, Wing Design, & Testing (Statics),” Presentation, 2024, presented at ASTM Committee F44 Meeting.[9] D. Perdolt and M. e. a. Thiele, “Comparison of Multi-Fidelity Rotor Analysis Tools for Transitional and Low Speed Flight Regimes,” Deutscher Luft- und Raumfahrtkongress, 2021.[10] S. S. Chauhan and J. R. R. A. Martins, “RANS-Based Aerodynamic Shape Optimization of a Wing with a Propeller in Front of the Wingtip,” Aerospace, 2024.[11] J. D. Anderson, Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill, 1995.[12] OpenFOAM, “Turbulence modeling in OpenFOAM: Guided Tutorials,” Online tutorial PDF, 2021.[13] F. Moens, “A Fast Aerodynamic Model for Aircraft Multidisciplinary Design and Optimization Process,” Aerospace, vol. 10, no. 1, p. 7, December 2022. [Online]. Available: https://www.mdpi.com/2226-4310/10/1/7[14] P. Spalart and S. e. a. Deck, “A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities,” Theoretical and Computational Fluid Dynamics, 2006.[15] J. Blazek, Computational Fluid Dynamics: Principles and Applications, 3rd ed. Elsevier, 2015.[16] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed. Pearson Education, 2007.[17] S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation / Taylor & Francis, 1980.[18] J. H. Ferziger, M. Peri´c, and R. L. Street, Computational Methods for Fluid Dynamics, 4th ed. Springer, 2019.[19] H. Glauert, The Elements of Aerofoil and Airscrew Theory. Cambridge: Cambridge University Press, 1983.[20] A. Fahad, “Measurement of Axial Induction Factor for a Model Wind Turbine,” Master’s thesis, University of Saskatchewan, 2012.[21] D. Zhao, N. Han, E. Goh, J. Cater, and A. Reinecke, Wind Turbines and Aerodynamics Energy Harvesters. McGraw-Hill, 1995.[22] G.-H. Cottet and P. D. Koumoutsakos, Vortex Methods: Theory and Practice. Cambridge University Press, 2000.[23] E. Alvarez and A. Ning, “High-Fidelity Modeling of Multirotor Aerodynamic Interactions for Aircraft Design,” AIAA, 2020.[24] GoEngineer. (2016, Dec.) Solidworks flow simulation sliding mesh explained. GoEngineer. Accessed June 27, 2025. [Online]. Available: https://www.goengineer.com/blog/solidworks-flow-simulation-sliding-mesh[25] H. Kutty and P. Rajendran, “3D CFD Simulation and Experimental Validation of Small APC Slow Flyer Propeller Blade,” Aerospace, vol. 4, no. 1, p. 10, 2017. [Online]. Available: https://www.mdpi.com/2226-4310/4/1/10[26] M. Morgut and E. Nobile, “Influence of Grid Type and Turbulence Model on the Numerical Prediction of the Flow around Marine Propellers Working in Uniform Inflow,” Ocean Engineering, vol. 42, pp. 26–34, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801812000243[27] P. Aref and M. e. a. Ghoreyshi, “Computational Study of Propeller–Wing Aerodynamic Interaction,” Aerospace, 2018.[28] J. G. Leishman, Principles of Helicopter Aerodynamics, 2nd ed., ser. Cambridge Aerospace Series. Cambridge: Cambridge University Press, 2006, vol. 12.[29] H. Kellerman and S. e. a. Fuhrmann, “Design of a Battery Cooling System for Hybrid Electric Aircraft,” Journal of Propulsion and Power, 2022.[30] L. Xiao and Y. e. a. Tan, “Distributed Hybrid Electric Propulsion Aircraft Design Based on Convex Optimized Power Allocation Management,” Aerospace, 2024.[31] G. P. G. da Silva, “Experimental assessment of aerodynamic and aeroacoustic interaction effects of wingtip-mounted propellers,” Ph.D. dissertation, University of Sao Paulo, 2023.[32] G. Resende and V. e. a. Malatesta, “Study of effects on the wing’s aerodynamic characteristics due to distributed propulsion over wingspan,” ICAS, 2022.[33] M. Patterson, N. Borer, and B. German, “A Simple Method for High-Lift Propeller Conceptual Design,” Presentation, 2016.[34] N. Hariharan, A. Wissink, M. Potsdam, and R. Strawn, “First-Principles Physics-Based Rotorcraft Flowfield Simulation Using HPCMP CREATE-AV Helios,” Computing in Science & Engineering, vol. 18, no. 6, pp. 19–26, Nov. 2016.[35] B. Wong, “A new derivative-free optimization method: Gaussian Crunching Search,” Optimization and Control, 2023.[36] J. Heeg and B. e. a. Stanford, “Whirl Flutter and the development of the NASA X-57 Maxwell,” IFASD, 2019.[37] S. F. Hoerner, Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Brick Town, NJ: Hoerner Fluid Dynamics, 1965, second printing.[38] M. Khalid, “A numerical study of the subgrid-scale fluid motion in turbulent flows,” Master’s thesis, Memorial University of Newfoundland, 2021.[39] S. H. and G. K., Boundary-Layer Theory, 9th ed. Berlin: Springer, 2016.[40] J. D. Anderson, Fundamentals of Aerodynamics, 5th ed. McGraw-Hill Education, 2010.[41] Embry-Riddle Aeronautical University. (2020) Thin airfoil theory. Embry-Riddle Aeronautical University. Accessed: 2025-06-25. [Online]. Available: https://eaglepubs.erau.edu/introductiontoaerospaceflightvehicles/chapter/thin-airfoil-theory/PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://bibliotecadigital.udea.edu.co/bitstreams/acba6033-5d6a-454a-9f30-d6548b3c9038/download3b6ce8e9e36c89875e8cf39962fe8920MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/2de4c99a-79fc-4139-8e5c-5acabf3469a5/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADORIGINALRamirezDaniel_2025_Aerodynamic_Propulsive_Optimization.pdfRamirezDaniel_2025_Aerodynamic_Propulsive_Optimization.pdfTrabajo de grado de pregrado.application/pdf19767667https://bibliotecadigital.udea.edu.co/bitstreams/47e241b6-4cc4-4411-a372-997c2c42d429/downloadebbdfc750baf2257f02616cbd4415298MD54trueAnonymousREADTEXTRamirezDaniel_2025_Aerodynamic_Propulsive_Optimization.pdf.txtRamirezDaniel_2025_Aerodynamic_Propulsive_Optimization.pdf.txtExtracted texttext/plain100656https://bibliotecadigital.udea.edu.co/bitstreams/e8028382-74a2-42f8-ab7b-dd6f241017a7/download9697570cbd9719f3a3bdbd58e39444beMD55falseAnonymousREADTHUMBNAILRamirezDaniel_2025_Aerodynamic_Propulsive_Optimization.pdf.jpgRamirezDaniel_2025_Aerodynamic_Propulsive_Optimization.pdf.jpgGenerated Thumbnailimage/jpeg6415https://bibliotecadigital.udea.edu.co/bitstreams/136987b9-5666-434e-9a7b-d2174f4c38f9/download76433342d34cb3679cfb5e5eb9608214MD56falseAnonymousREAD10495/48214oai:bibliotecadigital.udea.edu.co:10495/482142025-11-13 04:07:18.208http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercialShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=