Comments on the Riemann conjecture and index theory on Cantorian fractal space-time

ABSTRACT: An heuristic proof of the Riemman conjecture is proposed. It is based on the old idea of Polya-Hilbert. A discrete/fractal derivative self adjoint operator whose spectrum may contain the nontrivial zeroes of the zeta function is presented. To substantiate this heuristic proposal we show us...

Full description

Autores:
Mahecha Gómez, Jorge Eduardo
Castro Perelman, Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2002
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39812
Acceso en línea:
https://hdl.handle.net/10495/39812
Palabra clave:
Riemann hypothesis
Index theory (Mathematics)
Spectral theory (Mathematics)
Heurística
Heuristics
Fractales
Fractals
Espacio y tiempo
Space and time
http://id.loc.gov/authorities/subjects/sh2005000907
http://id.loc.gov/authorities/subjects/sh85064861
http://id.loc.gov/authorities/subjects/sh85126408
https://id.nlm.nih.gov/mesh/D000066506
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_5962b9ca93a4c6dbc101c8a0b7e148c1
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/39812
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Comments on the Riemann conjecture and index theory on Cantorian fractal space-time
title Comments on the Riemann conjecture and index theory on Cantorian fractal space-time
spellingShingle Comments on the Riemann conjecture and index theory on Cantorian fractal space-time
Riemann hypothesis
Index theory (Mathematics)
Spectral theory (Mathematics)
Heurística
Heuristics
Fractales
Fractals
Espacio y tiempo
Space and time
http://id.loc.gov/authorities/subjects/sh2005000907
http://id.loc.gov/authorities/subjects/sh85064861
http://id.loc.gov/authorities/subjects/sh85126408
https://id.nlm.nih.gov/mesh/D000066506
title_short Comments on the Riemann conjecture and index theory on Cantorian fractal space-time
title_full Comments on the Riemann conjecture and index theory on Cantorian fractal space-time
title_fullStr Comments on the Riemann conjecture and index theory on Cantorian fractal space-time
title_full_unstemmed Comments on the Riemann conjecture and index theory on Cantorian fractal space-time
title_sort Comments on the Riemann conjecture and index theory on Cantorian fractal space-time
dc.creator.fl_str_mv Mahecha Gómez, Jorge Eduardo
Castro Perelman, Carlos
dc.contributor.author.none.fl_str_mv Mahecha Gómez, Jorge Eduardo
Castro Perelman, Carlos
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Física Atómica y Molecular
dc.subject.lcsh.none.fl_str_mv Riemann hypothesis
Index theory (Mathematics)
Spectral theory (Mathematics)
topic Riemann hypothesis
Index theory (Mathematics)
Spectral theory (Mathematics)
Heurística
Heuristics
Fractales
Fractals
Espacio y tiempo
Space and time
http://id.loc.gov/authorities/subjects/sh2005000907
http://id.loc.gov/authorities/subjects/sh85064861
http://id.loc.gov/authorities/subjects/sh85126408
https://id.nlm.nih.gov/mesh/D000066506
dc.subject.decs.none.fl_str_mv Heurística
Heuristics
dc.subject.lemb.none.fl_str_mv Fractales
Fractals
Espacio y tiempo
Space and time
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2005000907
http://id.loc.gov/authorities/subjects/sh85064861
http://id.loc.gov/authorities/subjects/sh85126408
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D000066506
description ABSTRACT: An heuristic proof of the Riemman conjecture is proposed. It is based on the old idea of Polya-Hilbert. A discrete/fractal derivative self adjoint operator whose spectrum may contain the nontrivial zeroes of the zeta function is presented. To substantiate this heuristic proposal we show using generalized index-theory arguments, corresponding to the (fractal) spectral dimensions of fractal branes living in Cantorian-fractal space- time, how the required negative traces associated with those derivative operators naturally agree with the zeta function evaluated at the spectral dimensions. The ζ(0) = −1/2 plays a fundamental role. Final remarks on the recent developments in the proof of the Riemann conjecture are made.
publishDate 2002
dc.date.issued.none.fl_str_mv 2002
dc.date.accessioned.none.fl_str_mv 2024-06-09T12:42:04Z
dc.date.available.none.fl_str_mv 2024-06-09T12:42:04Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str acceptedVersion
dc.identifier.issn.none.fl_str_mv 0960-0779
10.1016/S0960-0779(01)00124-2
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/39812
dc.identifier.eissn.none.fl_str_mv 1873-2887
identifier_str_mv 0960-0779
10.1016/S0960-0779(01)00124-2
1873-2887
url https://hdl.handle.net/10495/39812
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Chaos. Solitons. Fractals.
dc.relation.citationendpage.spa.fl_str_mv 21
dc.relation.citationissue.spa.fl_str_mv 7
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.ispartofjournal.spa.fl_str_mv Chaos, Solitons and Fractals
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 22 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Oxford, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/320f13d8-d9ee-4da4-9837-2fb4c4d5bef4/download
https://bibliotecadigital.udea.edu.co/bitstreams/593e7771-86dd-46ea-9b20-e02e8c83fee2/download
https://bibliotecadigital.udea.edu.co/bitstreams/d12f721b-3b29-499e-bba4-798709352da0/download
https://bibliotecadigital.udea.edu.co/bitstreams/7b46bc47-c0b5-442f-8cec-4d86014306c6/download
https://bibliotecadigital.udea.edu.co/bitstreams/bb97bdb0-98d7-4d8c-99ca-58de7a62b134/download
bitstream.checksum.fl_str_mv 2635e24ea9860a1063ec1b7f1185013e
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
749001499c4378707f1ab08701d14abc
ea9731fe08ec1e8bd7bc9558f3a8ee60
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052253080715264
spelling Mahecha Gómez, Jorge EduardoCastro Perelman, CarlosGrupo de Física Atómica y Molecular2024-06-09T12:42:04Z2024-06-09T12:42:04Z20020960-077910.1016/S0960-0779(01)00124-2https://hdl.handle.net/10495/398121873-2887ABSTRACT: An heuristic proof of the Riemman conjecture is proposed. It is based on the old idea of Polya-Hilbert. A discrete/fractal derivative self adjoint operator whose spectrum may contain the nontrivial zeroes of the zeta function is presented. To substantiate this heuristic proposal we show using generalized index-theory arguments, corresponding to the (fractal) spectral dimensions of fractal branes living in Cantorian-fractal space- time, how the required negative traces associated with those derivative operators naturally agree with the zeta function evaluated at the spectral dimensions. The ζ(0) = −1/2 plays a fundamental role. Final remarks on the recent developments in the proof of the Riemann conjecture are made.COL000844122 páginasapplication/pdfengElsevierOxford, Inglaterrahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Riemann hypothesisIndex theory (Mathematics)Spectral theory (Mathematics)HeurísticaHeuristicsFractalesFractalsEspacio y tiempoSpace and timehttp://id.loc.gov/authorities/subjects/sh2005000907http://id.loc.gov/authorities/subjects/sh85064861http://id.loc.gov/authorities/subjects/sh85126408https://id.nlm.nih.gov/mesh/D000066506Comments on the Riemann conjecture and index theory on Cantorian fractal space-timeArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionChaos. Solitons. Fractals.217113Chaos, Solitons and FractalsPublicationORIGINALMahechaJorge_2002_CommentsRiemannConjecture.pdfMahechaJorge_2002_CommentsRiemannConjecture.pdfArtículo de investigaciónapplication/pdf305256https://bibliotecadigital.udea.edu.co/bitstreams/320f13d8-d9ee-4da4-9837-2fb4c4d5bef4/download2635e24ea9860a1063ec1b7f1185013eMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/593e7771-86dd-46ea-9b20-e02e8c83fee2/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/d12f721b-3b29-499e-bba4-798709352da0/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMahechaJorge_2002_CommentsRiemannConjecture.pdf.txtMahechaJorge_2002_CommentsRiemannConjecture.pdf.txtExtracted texttext/plain53284https://bibliotecadigital.udea.edu.co/bitstreams/7b46bc47-c0b5-442f-8cec-4d86014306c6/download749001499c4378707f1ab08701d14abcMD54falseAnonymousREADTHUMBNAILMahechaJorge_2002_CommentsRiemannConjecture.pdf.jpgMahechaJorge_2002_CommentsRiemannConjecture.pdf.jpgGenerated Thumbnailimage/jpeg10844https://bibliotecadigital.udea.edu.co/bitstreams/bb97bdb0-98d7-4d8c-99ca-58de7a62b134/downloadea9731fe08ec1e8bd7bc9558f3a8ee60MD55falseAnonymousREAD10495/39812oai:bibliotecadigital.udea.edu.co:10495/398122025-03-26 19:23:52.91http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=