Comments on the Riemann conjecture and index theory on Cantorian fractal space-time
ABSTRACT: An heuristic proof of the Riemman conjecture is proposed. It is based on the old idea of Polya-Hilbert. A discrete/fractal derivative self adjoint operator whose spectrum may contain the nontrivial zeroes of the zeta function is presented. To substantiate this heuristic proposal we show us...
- Autores:
-
Mahecha Gómez, Jorge Eduardo
Castro Perelman, Carlos
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2002
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/39812
- Acceso en línea:
- https://hdl.handle.net/10495/39812
- Palabra clave:
- Riemann hypothesis
Index theory (Mathematics)
Spectral theory (Mathematics)
Heurística
Heuristics
Fractales
Fractals
Espacio y tiempo
Space and time
http://id.loc.gov/authorities/subjects/sh2005000907
http://id.loc.gov/authorities/subjects/sh85064861
http://id.loc.gov/authorities/subjects/sh85126408
https://id.nlm.nih.gov/mesh/D000066506
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| Summary: | ABSTRACT: An heuristic proof of the Riemman conjecture is proposed. It is based on the old idea of Polya-Hilbert. A discrete/fractal derivative self adjoint operator whose spectrum may contain the nontrivial zeroes of the zeta function is presented. To substantiate this heuristic proposal we show using generalized index-theory arguments, corresponding to the (fractal) spectral dimensions of fractal branes living in Cantorian-fractal space- time, how the required negative traces associated with those derivative operators naturally agree with the zeta function evaluated at the spectral dimensions. The ζ(0) = −1/2 plays a fundamental role. Final remarks on the recent developments in the proof of the Riemann conjecture are made. |
|---|
