Comments on the Riemann conjecture and index theory on Cantorian fractal space-time

ABSTRACT: An heuristic proof of the Riemman conjecture is proposed. It is based on the old idea of Polya-Hilbert. A discrete/fractal derivative self adjoint operator whose spectrum may contain the nontrivial zeroes of the zeta function is presented. To substantiate this heuristic proposal we show us...

Full description

Autores:
Mahecha Gómez, Jorge Eduardo
Castro Perelman, Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2002
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39812
Acceso en línea:
https://hdl.handle.net/10495/39812
Palabra clave:
Riemann hypothesis
Index theory (Mathematics)
Spectral theory (Mathematics)
Heurística
Heuristics
Fractales
Fractals
Espacio y tiempo
Space and time
http://id.loc.gov/authorities/subjects/sh2005000907
http://id.loc.gov/authorities/subjects/sh85064861
http://id.loc.gov/authorities/subjects/sh85126408
https://id.nlm.nih.gov/mesh/D000066506
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Description
Summary:ABSTRACT: An heuristic proof of the Riemman conjecture is proposed. It is based on the old idea of Polya-Hilbert. A discrete/fractal derivative self adjoint operator whose spectrum may contain the nontrivial zeroes of the zeta function is presented. To substantiate this heuristic proposal we show using generalized index-theory arguments, corresponding to the (fractal) spectral dimensions of fractal branes living in Cantorian-fractal space- time, how the required negative traces associated with those derivative operators naturally agree with the zeta function evaluated at the spectral dimensions. The ζ(0) = −1/2 plays a fundamental role. Final remarks on the recent developments in the proof of the Riemann conjecture are made.