Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia

La creciente demanda energética y la generación de residuos sólidos representan desafíos críticos en el contexto actual. En este sentido, la digestión anaerobia (DA) se configura como una solución viable para convertir residuos orgánicos en gas metano, contribuyendo así a la sostenibilidad energétic...

Full description

Autores:
Machado Jaramillo, Alejandra
Arango Espinosa, Santiago
Tipo de recurso:
Tesis
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46937
Acceso en línea:
https://hdl.handle.net/10495/46937
Palabra clave:
Digestión anaerobia
Anaerobic digestion
Plantas de tratamiento de aguas residuales
Sewage disposal plants
Biogás
Biogas
Residuos orgánicos
Organic wastes
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_583282a8dc5b408d9bd9be860c130ca6
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/46937
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia
title Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia
spellingShingle Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia
Digestión anaerobia
Anaerobic digestion
Plantas de tratamiento de aguas residuales
Sewage disposal plants
Biogás
Biogas
Residuos orgánicos
Organic wastes
title_short Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia
title_full Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia
title_fullStr Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia
title_full_unstemmed Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia
title_sort Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia
dc.creator.fl_str_mv Machado Jaramillo, Alejandra
Arango Espinosa, Santiago
dc.contributor.advisor.none.fl_str_mv Pulgarín Muñoz, Carlos Esteven
dc.contributor.author.none.fl_str_mv Machado Jaramillo, Alejandra
Arango Espinosa, Santiago
dc.subject.lemb.none.fl_str_mv Digestión anaerobia
Anaerobic digestion
Plantas de tratamiento de aguas residuales
Sewage disposal plants
Biogás
Biogas
Residuos orgánicos
Organic wastes
topic Digestión anaerobia
Anaerobic digestion
Plantas de tratamiento de aguas residuales
Sewage disposal plants
Biogás
Biogas
Residuos orgánicos
Organic wastes
description La creciente demanda energética y la generación de residuos sólidos representan desafíos críticos en el contexto actual. En este sentido, la digestión anaerobia (DA) se configura como una solución viable para convertir residuos orgánicos en gas metano, contribuyendo así a la sostenibilidad energética y a la gestión de residuo. Este proceso biológico implica la descomposición de materia orgánica por microorganismos en ausencia de oxígeno, generando gas metano, que puede utilizarse como fuente de energía. El rendimiento de la DA se fundamenta en parámetros críticos como la temperatura, el pH, el tiempo de retención hidráulica, la relación carbono/nitrógeno (C/N), entre otros. Los sustratos utilizados en la DA abarcan residuos domésticos, agropecuarios e industriales, cada uno con características fisicoquímicas que influyen en su biodegradabilidad y en la producción de metano. El presente trabajo se llevó a cabo a partir análisis bibliográficos utilizando el indexador Scopus, donde se seleccionaron artículos relevantes publicados entre 2021 y 2025, lo que permitió la identificación de 128 artículos pertinentes para el análisis bibliométrico y bibliográfico. Los resultados del análisis revelaron tres clústeres temáticos principales: "Producción de Biogás", "Colombia" y "Plantas de Tratamiento de Aguas Residuales (WWTP)", lo que refleja un creciente interés en la DA en el contexto colombiano. Se identificaron debilidades, como la falta de estudios a escala real y limitaciones en la infraestructura. Sin embargo, también se presentan oportunidades, como el aumento del interés en energías renovables y posibilidades de financiamiento para proyectos de biotransformación. A pesar de contar con una documentación científica robusta y altamente relevante en el contexto del cambio climático, persisten desafíos como la inestabilidad en las políticas ambientales y la falta de interés general en temas de sostenibilidad. La biotransformación de residuos orgánicos a través de la DA se perfila como una estrategia prometedora para generar energía renovable en Colombia. Es crucial fomentar la investigación y el desarrollo de tecnologías relacionadas, así como el apoyo de políticas públicas que faciliten la integración de estas prácticas sostenibles. Además, la educación y sensibilización en la gestión de residuos son fundamentales para promover la participación comunitaria en la sostenibilidad.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-08-04T13:07:46Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Especialización
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_46ec
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/COther
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/other
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_46ec
status_str draft
dc.identifier.citation.none.fl_str_mv Machado Jaramillo, A., & Arango Espinosa, S. (2025). Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia, 2025. [Trabajo de grado especialización]. Universidad de Antioquia, Medellín, Colombia.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/46937
identifier_str_mv Machado Jaramillo, A., & Arango Espinosa, S. (2025). Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia, 2025. [Trabajo de grado especialización]. Universidad de Antioquia, Medellín, Colombia.
url https://hdl.handle.net/10495/46937
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Ahmad, A., Yadav, A. K., Singh, A., & Singh, D. K. (2024). A comprehensive machine learning-coupled response surface methodology approach for predictive modeling and optimization of biogas potential in anaerobic Co-digestion of organic waste. Biomass and Bioenergy, 180. https://doi.org/10.1016/j.biombioe.2023.106995
Ali, S. S., Al-Tohamy, R., Mahmoud, Y. A. G., Kornaros, M., Sun, S., & Sun, J. (2022). Recent advances in the life cycle assessment of biodiesel production linked to azo dye degradation using yeast symbionts of termite guts: A critical review. In Energy Reports (Vol. 8, pp. 7557–7581). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2022.05.240
Amo-Duodu, G., Buthelezi, K. S., Rathilal, S., Mahlangu, T. P., Chollom, M. N., & Tetteh, E. K. (2023). Biostimulation of anaerobic digested wastewater using magnetic nanoparticles and an external magnetic field for biogas enhancement. Biofuels, Bioproducts and Biorefining, 17(2), 324–331. https://doi.org/10.1002/bbb.2409
Aspectos generales del Sector agroindustrial de la caña So mos azúcar Contenido. (n.d.). Bogotá DC. (n.d.). Boletín técnico.
Cabrita, T. M., & Santos, M. T. (2023). Biochemical Methane Potential Assays for Organic Wastes as an Anaerobic Digestion Feedstock. Sustainability (Switzerland), 15(15). https://doi.org/10.3390/su151511573
Calderón-Márquez, A. J. (2023). Biogas utilization from municipal solid waste in developing countries towards the transition to sustainable development – The Colombian case | Aprovechamiento de biogás a partir de residuos sólidos municipales en países en desarrollo hacia la transición a. DYNA (Colombia), 90(227), 147–156. https://doi.org/10.15446/dyna.v90n227.107131
Campo, G., Cerutti, A., Zanetti, M., & Ruffino, B. (2024). Feasibility of biogas upgrading at a WWTP after pre-treatment application: Techno-economic assessment validation with pilot test data. Journal of Environmental Management, 370. https://doi.org/10.1016/j.jenvman.2024.122780
Campo, G., Ruffino, B., Reyes, A., & Zanetti, M. (2023). Water-Energy Nexus in the Antofagasta Mining District: Options for Municipal Wastewater Reuse from a Nearly Energy-Neutral WWTP. Water (Switzerland), 15(6). https://doi.org/10.3390/w15061221
Chaouali, S., Muchangos, L. S. D., Ito, L., & Tokai, A. (2024). Assessment of the Environmental Impacts of Wastewater Treatment in Tunisia. Journal of Water and Environment Technology, 22(2), 61–74. https://doi.org/10.2965/JWET.22-119
Chen, J. W., Chan, Y. J., Arumugasamy, S. K., & Yazdi, S. K. (2023). Process modelling and optimisation of methane yield from palm oil mill effluent using response surface methodology and artificial neural network. Journal of Water Process Engineering, 52. https://doi.org/10.1016/j.jwpe.2023.103493
Chong, D. J. S., Chan, Y. J., Arumugasamy, S. K., Yazdi, S. K., & Lim, J. W. (2023). Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production from palm oil mill effluent (POME). Energy, 266. https://doi.org/10.1016/j.energy.2022.126449
Choudhury, A. R., Singh, N., Lalwani, J., Srinivasan, H., & Palani, S. G. (2024). Enhancing biomethanation performance through co-digestion of diverse organic wastes: a comprehensive study on substrate optimization, inoculum selection, and microbial community analysis. Environmental Science and Pollution Research, 31(23), 34622–34646. https://doi.org/10.1007/s11356-024-33557-7
Cinar, S., Cinar, S. Ö., Ng, S. M., & Kuchta, K. (2022). Analysis Phase of Lean Six Sigma Methodology with Scaled-Down Laboratory Experiments for an Industrial-Scale Biogas Plant. Designs, 6(3). https://doi.org/10.3390/designs6030050
Cinar, S., Önen Cinar, S., Staudter, C., & Kuchta, K. (2022). Operational Excellence in a Biogas Plant through Integration of Lean Six Sigma Methodology. Designs, 6(4). https://doi.org/10.3390/designs6040061
Corigliano, O., Iannuzzi, M., Pellegrino, C., D’Amico, F., Pagnotta, L., & Fragiacomo, P. (2023). Enhancing Energy Processes and Facilities Redesign in an Anaerobic Digestion Plant for Biomethane Production. Energies, 16(15). https://doi.org/10.3390/en16155782
Coutu, A., Mottelet, S., Guérin, S., Rocher, V., Pauss, A., & Ribeiro, T. (2022). Methane yield optimization using mix response design and bootstrapping: application to solid-state anaerobic co-digestion process of cattle manure and damp grass. Bioresource Technology Reports, 17. https://doi.org/10.1016/j.biteb.2021.100883
Crujeira, A. T., Trancoso, M. A., Eusébio, A., Oliveira, A. C., Passarinho, P. C., Abreu, M., Marques, I. P., Marques, P. A. S. S., Marques, S., Albergaria, H., Gírio, F., & Moura, P. (2023). Admissibility Grid to Support the Decision for the Preferential Routing of Portuguese Endogenous Waste Biomass for the Production of Biogas, Advanced Biofuels, Electricity and Heat. Biomass (Switzerland), 3(4), 336–366. https://doi.org/10.3390/biomass3040021
Cuadrado-Osorio, P. D., Ramírez-Mejía, J. M., Mejía-Avellaneda, L. F., Mesa, L., & Bautista, E. J. (2022). Agro-industrial residues for microbial bioproducts: A key booster for bioeconomy. In Bioresource Technology Reports (Vol. 20). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2022.101232
Cucina, M., Castro, L., Escalante, H., Ferrer, I., & Garfí, M. (2021). Benefits and risks of agricultural reuse of digestates from plastic tubular digesters in Colombia. Waste Management, 135, 220–228. https://doi.org/10.1016/j.wasman.2021.09.003
Dabiri, S., Kumar, P., & Rauch, W. (2023). Integrating biokinetics with computational fluid dynamics for energy performance analysis in anaerobic digestion. Bioresource Technology, 373. https://doi.org/10.1016/j.biortech.2023.128728
de Castro e Silva, H. L., Huamán Córdova, M. E., Barros, R. M., Tiago Filho, G. L., Silva Lora, E. E., Moreira Santos, A. H., dos Santos, I. F. S., de Oliveira Botan, M. C. C., Pedreira, J. R., & Flauzino, B. K. (2022). Lab-scale and economic analysis of biogas production from swine manure. Renewable Energy, 186, 350–365. https://doi.org/10.1016/j.renene.2021.12.114
De, P., Ambiental, S., Social, R., Validación, E., Fajardo López -Presidente, J., Corina, E., Moreno -Vicepresidenta Ejecutiva Autor, Z., Fernando Naranjo -Director, J., Técnica, Á., Manuel, J., De, H.-S., & Comunicaciones, R. S. E. (n.d.). PRODUCCIÓN DEL INFORME Porkcolombia-Fondo Nacional de la Porcicultura.
El Bari, H., & Habchi, S. (2024). Enhancing biogas production from vinasse through optimizing hydraulic retention time and added load using the response surface methodology. Heliyon, 10(19). https://doi.org/10.1016/j.heliyon.2024.e38967
Ellacuriaga, M., González, R., & Gómez, X. (2024). Feasibility of coupling hydrogen and methane production in WWTP: Simulation of sludge and food wastes co-digestion. Energy Nexus, 14. https://doi.org/10.1016/j.nexus.2024.100285
Esteban Cantillo, O. J., & Quesada, B. (2022). Solid Waste Characterization and Management in a Highly Vulnerable Tropical City. Sustainability (Switzerland), 14(24). https://doi.org/10.3390/su142416339
Fountoulakis, M. S., Frkova, Z., Lemaigre, S., Goux, X., Calusinska, M., & Roussel, J. (2024). Enhancement of anaerobic digestion of dairy wastewater by addition of conductive materials with or without the combination of external voltage application. Journal of Chemical Technology and Biotechnology, 99(8), 1837–1846. https://doi.org/10.1002/jctb.7685
Grandas Tavera, C., Raab, T., & Holguin Trujillo, L. (2023). Valorization of biogas digestate as organic fertilizer for closing the loop on the economic viability to develop biogas projects in Colombia. Cleaner and Circular Bioeconomy, 4. https://doi.org/10.1016/j.clcb.2022.100035
Guerrero-Martin, C. A., Rojas-Sanchez, A. N., Cruz-Pinzón, D. F., Milquez-Sanabria, H. A., Sotelo-Tobon, D. L., da Cunha, A. L. R., Salinas-Silva, R., Camacho-Galindo, S., Costa Gomes, V. J., & Cunha Malagueta, D. (2024). The Advantage of Citrus Residues as Feedstock for Biogas Production: A Two-Stage Anaerobic Digestion System. Energies, 17(6). https://doi.org/10.3390/en17061315
Hellal, M. S., El-Kamah, H. M., & Doma, H. S. (2024). High-performance internal circulation anaerobic granular sludge reactor for cattle slaughterhouse wastewater treatment and simultaneous biogas production. BMC Biotechnology, 24(1). https://doi.org/10.1186/s12896-024-00849-2
I N F O R M E N A C I O N A L D E DISPOSICIÓN FINAL DISPOSICIÓN FINAL DE RESIDUOS DE RESIDUOS SÓLIDOS 2023 SÓLIDOS 2023. (n.d.).
Informe de Gestión 2023 Colanta - Navegable Landing. (n.d.).
INFORME DE SOSTENIBILIDAD 2023 Si lo nutres, es posible. (n.d.). www.alqueria.com.co
Informe-Sostenibilidad-aliar2022. (n.d.).
Juanpera, M., Ferrer-Martí, L., Diez-Montero, R., Ferrer, I., Castro, L., Escalante, H., & Garfí, M. (2022a). A robust multicriteria analysis for the post-treatment of digestate from low-tech digesters. Boosting the circular bioeconomy of small-scale farms in Colombia. Renewable and Sustainable Energy Reviews, 166. https://doi.org/10.1016/j.rser.2022.112638
Juanpera, M., Ferrer-Martí, L., Diez-Montero, R., Ferrer, I., Castro, L., Escalante, H., & Garfí, M. (2022b). A robust multicriteria analysis for the post-treatment of digestate from low-tech digesters. Boosting the circular bioeconomy of small-scale farms in Colombia. Renewable and Sustainable Energy Reviews, 166. https://doi.org/10.1016/j.rser.2022.112638
Karolinczak, B., Walczak, J., Bogacka, M., & Zubrowska-Sudol, M. (2024). Life Cycle Assessment of sewage sludge mono-digestion and co-digestion with the organic fraction of municipal solid waste at a wastewater treatment plant. Science of the Total Environment, 907. https://doi.org/10.1016/j.scitotenv.2023.167801
Kasinath, A., Fudala-Ksiazek, S., Szopinska, M., Bylinski, H., Artichowicz, W., Remiszewska-Skwarek, A., & Luczkiewicz, A. (2021). Biomass in biogas production: Pretreatment and codigestion. Renewable and Sustainable Energy Reviews, 150. https://doi.org/10.1016/j.rser.2021.111509
Kuboń, M., Komorowska, M., Niemiec, M., Sikora, J., Szeląg-Sikora, A., Olech, E., Molik, E., & Gajda, J. (2024). The Impact of Biochar Additives and Fat-Emulsifying Substances on the Efficiency of the Slaughterhouse Waste Biogasing Process. Energies, 17(13). https://doi.org/10.3390/en17133065
Lekše, N., Griessler Bulc, T., & Žgajnar Gotvajn, A. (2024). The Potential of Ozonation to Reduce Impact of Waste Sludge-Entrapped Microplastics to Biogas Production. Ozone: Science and Engineering, 46(3), 255–266. https://doi.org/10.1080/01919512.2024.2332286
Lights-On-Energy-Needs-in-Latin-America-and-the-Caribbean-to-2040. (n.d.).
Lima, D., Appleby, G., & Li, L. (2023). A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants. Energies, 16(5). https://doi.org/10.3390/en16052369
Lippelt, J., & Sindram, M. (2014). Global Energy Consumption. https://www.researchgate.net/publication/227384051
López-Dávila, E., Hernández, J. J., López González, L. M., Barrera Cardoso, E. L., Amarante, E. B., Contreras Velázquez, L. M., & Romero-Romero, O. (2022). Biochemical methane potential of agro-wastes as a renewable source alternative for electrical energy production in Cuba | Potencial bioquímico de metano de desechos agrícolas como fuente renovable alternativa para la producción de energía eléctrica en Cub. Ciencia Tecnologia Agropecuaria, 23(1). https://doi.org/10.21930/rcta.vol23_num1_art:1890
Mikhailova, L., Dubik, V., Dumanskyi, O., & Kozak, O. (2024). Possibilities of landfills and solid waste sites for energy production in Ukraine. Machinery and Energetics, 15(1), 86–94. https://doi.org/10.31548/machinery/1.2024.86
Minardi, M., Marocco, P., & Gandiglio, M. (2023). Carbon recovery from biogas through upgrading and methanation: A techno-economic and environmental assessment. Journal of CO2 Utilization, 78. https://doi.org/10.1016/j.jcou.2023.102632
Odejobi, O. J., Odekanle, E. L., Bamimore, A., Falowo, O. A., & Akeredolu, F. (2022). Anaerobic digestion of abattoir wastes for biogas production: optimization via performance evaluation comparison. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2122150
Oladejo, O. S., Dahunsi, S. O., Odekanle, E. L., Odeleye, O. A., Aroyewon, O. S., Oladele, A. O., Fala, G. S., Olanipekun, A. A., Abiola, A. O., Ojediran, J. O., Ajayi, O. E., & Olawuni, O. A. (2025). Cattle rumen inoculated Gliricidia sepium with poultry manure: Pretreatment, biogas production, and optimization. Cleaner Engineering and Technology, 25. https://doi.org/10.1016/j.clet.2025.100923
Olatunji, K. O., & Madyira, D. M. (2023). Effect of acidic pretreatment on the microstructural arrangement and anaerobic digestion of Arachis hypogea shells; and process parameters optimization using response surface methodology. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15145
Otieno, E. O., Kiplimo, R., & Mutwiwa, U. (2023). Optimization of anaerobic digestion parameters for biogas production from pineapple wastes co-digested with livestock wastes. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e14041
Pardo Cuervo, O. H., Rosas, C. A., & Romanelli, G. P. (2024). Valorization of residual lignocellulosic biomass in South America: a review. Environmental Science and Pollution Research, 31(32), 44575–44607. https://doi.org/10.1007/s11356-024-33968-6
Pasalari, H., Ghasemian, M., Esrafili, A., Gholami, M., & Farzadkia, M. (2022). Upgrading the biogas production from raw landfill leachate using O<inf>3</inf>/H<inf>2</inf>O<inf>2</inf> pretreatment process: Modeling, optimization and anaerobic digestion performance. Ecotoxicology and Environmental Safety, 247. https://doi.org/10.1016/j.ecoenv.2022.114222
Pereira, F., & Silva, C. (2023). Energetic Valorization of Bio-Waste from Municipal Solid Waste in Porto Santo Island. Clean Technologies, 5(1), 233–258. https://doi.org/10.3390/cleantechnol5010014
Presta-Novello, D., Salazar-Camacho, N. A., Delgadillo-Mirquez, L., Hernández-Sarabia, H. M., & Álvarez-Bustos, M. D. P. (2023). Sustainable Development in the Colombian Post-Conflict—The Impact of Renewable Energies in Coffee-Growing Women. Sustainability (Switzerland), 15(2). https://doi.org/10.3390/su15021618
Pupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., & Pourkashanian, M. (2019). Large scale integration of renewable energy sources (RES) in the future Colombian energy system. Energy, 186, 115805. https://doi.org/10.1016/J.ENERGY.2019.07.135
Ramón, A. A., Vásquez, J. E., Delgado, J. M., Domínguez-Carvajal, D., Mosquera-Mena, A. M., Molina, F., & Peñuela-Vásquez, M. (2023). Evaluation of Potential Substrates for Biogas Production in Colombia using Anaerobic Digestion Systems | Evaluación de sustratos potenciales para la producción de biogás en Colombia utilizando sistemas de digestión anaerobia. Ingenieria e Investigacion, 43(2). https://doi.org/10.15446/ING.INVESTIG.100834
Rasouli, M., & Ataeiyan, B. (2024). Investigation and Optimization of Operational Conditions of Anaerobic Digestion Process for Enhanced Biogas Production Yield in a CSTR Using RSM. International Journal of Energy Research, 2024. https://doi.org/10.1155/2024/9158477
Rocha-Meneses, L., Luna-delRisco, M., González, C. A., Moncada, S. V., Moreno, A., Sierra-Del Rio, J., & Castillo-Meza, L. E. (2023). An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia. Energies, 16(16). https://doi.org/10.3390/en16165901
Rodríguez Romero, T. E., Cabello Eras, J. J., Sagastume Gutierrez, A., Mendoza Fandiño, J. M., & Rueda Bayona, J. G. (2025). The Energy Potential of Agricultural Biomass Residues for Household Use in Rural Areas in the Department La Guajira (Colombia). Sustainability (Switzerland), 17(3). https://doi.org/10.3390/su17030974
Ruiz, L. M., Fernández, M., Genaro, A., Martín-Pascual, J., & Zamorano, M. (2023). Multi-Parametric Analysis Based on Physico-Chemical Characterization and Biochemical Methane Potential Estimation for the Selection of Industrial Wastes as Co-Substrates in Anaerobic Digestion. Energies, 16(14). https://doi.org/10.3390/en16145444
Ruíz-Bastidas, R. C., & Cadavid-Rodríguez, L. S. (2023). Effect of nutrients, inoculum and co-substrates on methane potential of cattle manure | Efecto de nutrientes, inóculo y cosustratos sobre el potencial de metano del estiércol bovino. Revista Facultad de Ingenieria, 108, 41–53. https://doi.org/10.17533/udea.redin.20220990
Sánchez Nocete, E., & Pérez Rodríguez, J. (2022). A Simple Methodology for Estimating the Potential Biomethane Production in a Region: Application in a Case Study. Sustainability (Switzerland), 14(23). https://doi.org/10.3390/su142315978
Siddiqui, M. I., Farooqi, I. H., Basheer, F., Rameez, H., & Isa, M. H. (2023). Pretreatment of Slaughterhouse Effluent Treatment Plant Sludge Using Electro-Fenton Process for Anaerobic Digestion. Sustainability (Switzerland), 15(4). https://doi.org/10.3390/su15043159
Superintendencia de Servicios Públicos Domiciliarios. (22 de diciembre de 2023). Storymaps Arcgis. Obtenido de ArcGIS StoryMaps Web site: https://storymaps.arcgis.com/stories/36bc9c665c6740cf87ca495f7c1b2aea
Tavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., & Castro, L. (2023a). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173. https://doi.org/10.1016/j.rser.2022.113097
Tavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., & Castro, L. (2023b). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173. https://doi.org/10.1016/j.rser.2022.113097
Tian, Y., Liu, S., Guo, Z., Wu, N., Liang, J., Zhao, R., Hao, L., & Zeng, M. (2022). Insight into Greenhouse Gases Emissions and Energy Consumption of Different Full-Scale Wastewater Treatment Plants via ECAM Tool. International Journal of Environmental Research and Public Health, 19(20). https://doi.org/10.3390/ijerph192013387
Tjutju, N. A. S., Ammenberg, J., & Lindfors, A. (2024). Biogas potential studies: A review of their scope, approach, and relevance. Renewable and Sustainable Energy Reviews, 201. https://doi.org/10.1016/j.rser.2024.114631
Triviño-Pineda, J.-S., Sanchez-Rodriguez, A., & Peláez, N. P. (2024). Biogas production from organic solid waste through anaerobic digestion: A meta-analysis. Case Studies in Chemical and Environmental Engineering, 9. https://doi.org/10.1016/j.cscee.2024.100618
Twi-Yeboah, N., Osei, D., Dontoh, W. H., Asamoah, G. A., Baffoe, J., & Danquah, M. K. (2024). Enhancing Energy Efficiency and Resource Recovery in Wastewater Treatment Plants. Energies, 17(13). https://doi.org/10.3390/en17133060
van den Oever, A. E. M., Cardellini, G., Sels, B. F., & Messagie, M. (2021). Life cycle environmental impacts of compressed biogas production through anaerobic digestion of manure and municipal organic waste. Journal of Cleaner Production, 306. https://doi.org/10.1016/j.jclepro.2021.127156
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 44 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Especialización en Gestión Ambiental
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/2624be5e-5349-4c41-85bb-fb33f1800009/download
https://bibliotecadigital.udea.edu.co/bitstreams/d64896a7-16ba-4fe8-8d0f-6afe318db2dd/download
https://bibliotecadigital.udea.edu.co/bitstreams/e6c0d7d3-7878-4d4f-bee2-6e12cc2222f3/download
https://bibliotecadigital.udea.edu.co/bitstreams/4cebcc46-416f-4709-9c76-e8e0163c80e9/download
https://bibliotecadigital.udea.edu.co/bitstreams/421d7eb6-ac3e-46b0-86ac-48cabccedc45/download
bitstream.checksum.fl_str_mv b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
1f75a4e06a9b988042fc3d2388d186e4
51d1e3a67472c8a8c42c98399c6054cd
68417667ae98085996aae65d5b65e7fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052455446446080
spelling Pulgarín Muñoz, Carlos EstevenMachado Jaramillo, AlejandraArango Espinosa, Santiago2025-08-04T13:07:46Z2025Machado Jaramillo, A., & Arango Espinosa, S. (2025). Biotransformación de residuos orgánicos mediante métodos anaerobios en Colombia, 2025. [Trabajo de grado especialización]. Universidad de Antioquia, Medellín, Colombia.https://hdl.handle.net/10495/46937La creciente demanda energética y la generación de residuos sólidos representan desafíos críticos en el contexto actual. En este sentido, la digestión anaerobia (DA) se configura como una solución viable para convertir residuos orgánicos en gas metano, contribuyendo así a la sostenibilidad energética y a la gestión de residuo. Este proceso biológico implica la descomposición de materia orgánica por microorganismos en ausencia de oxígeno, generando gas metano, que puede utilizarse como fuente de energía. El rendimiento de la DA se fundamenta en parámetros críticos como la temperatura, el pH, el tiempo de retención hidráulica, la relación carbono/nitrógeno (C/N), entre otros. Los sustratos utilizados en la DA abarcan residuos domésticos, agropecuarios e industriales, cada uno con características fisicoquímicas que influyen en su biodegradabilidad y en la producción de metano. El presente trabajo se llevó a cabo a partir análisis bibliográficos utilizando el indexador Scopus, donde se seleccionaron artículos relevantes publicados entre 2021 y 2025, lo que permitió la identificación de 128 artículos pertinentes para el análisis bibliométrico y bibliográfico. Los resultados del análisis revelaron tres clústeres temáticos principales: "Producción de Biogás", "Colombia" y "Plantas de Tratamiento de Aguas Residuales (WWTP)", lo que refleja un creciente interés en la DA en el contexto colombiano. Se identificaron debilidades, como la falta de estudios a escala real y limitaciones en la infraestructura. Sin embargo, también se presentan oportunidades, como el aumento del interés en energías renovables y posibilidades de financiamiento para proyectos de biotransformación. A pesar de contar con una documentación científica robusta y altamente relevante en el contexto del cambio climático, persisten desafíos como la inestabilidad en las políticas ambientales y la falta de interés general en temas de sostenibilidad. La biotransformación de residuos orgánicos a través de la DA se perfila como una estrategia prometedora para generar energía renovable en Colombia. Es crucial fomentar la investigación y el desarrollo de tecnologías relacionadas, así como el apoyo de políticas públicas que faciliten la integración de estas prácticas sostenibles. Además, la educación y sensibilización en la gestión de residuos son fundamentales para promover la participación comunitaria en la sostenibilidad.TABLA DE CONTENIDO. 1. INTRODUCCIÓN ............................................................................................................ 1-7 2. MATERIALES Y MÉTODOS ........................................................................................... 2-10 2.1. Rastreo y análisis bibliográfico .................................................................................................... 2-10 2.2. Identificación de residuos orgánicos generados en Colombia. ..................................................... 2-10 2.3. Análisis de la aplicabilidad en Colombia ...................................................................................... 2-11 3. RESULTADOS Y DISCUSIÓN ......................................................................................... 3-11 3.1. La digestión anaerobia (DA) ........................................................................................................ 3-11 3.1.1. Avances científicos y académicos .......................................................................................... 3-11 3.1.2. Rutas metabólicas.................................................................................................................. 3-15 3.1.3. Sustratos y co-sustratos ......................................................................................................... 3-16 3.1.4. Parámetros de operación ...................................................................................................... 3-20 3.1.5. Tipos de reactores ................................................................................................................. 3-24 3.1.6. Análisis técnico económico y ambiental ................................................................................ 3-27 3.2. Identificación de residuos ............................................................................................................ 3-30 3.2.1. Sector ganadero .................................................................................................................... 3-30 3.2.2. Sector industrial ..................................................................................................................... 3-31 3.2.3. Sector agrícola ....................................................................................................................... 3-32 3.2.4. Aguas residuales .................................................................................................................... 3-32 3.2.5. Fracción orgánica de residuos municipales ........................................................................... 3-33 3.3. Análisis de residuos sólidos en Colombia..................................................................................... 3-37 4. CONCLUSIONES .......................................................................................................... 4-38 5. REFERENCIAS BIBLIOGRÁFICAS. .................................................................................. 5-39EspecializaciónEspecialista en Gestión Ambiental44 páginasapplication/pdfspaUniversidad de AntioquiaEspecialización en Gestión AmbientalFacultad de IngenieríaCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Biotransformación de residuos orgánicos mediante métodos anaerobios en ColombiaTrabajo de grado - Especializaciónhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/draftAhmad, A., Yadav, A. K., Singh, A., & Singh, D. K. (2024). A comprehensive machine learning-coupled response surface methodology approach for predictive modeling and optimization of biogas potential in anaerobic Co-digestion of organic waste. Biomass and Bioenergy, 180. https://doi.org/10.1016/j.biombioe.2023.106995Ali, S. S., Al-Tohamy, R., Mahmoud, Y. A. G., Kornaros, M., Sun, S., & Sun, J. (2022). Recent advances in the life cycle assessment of biodiesel production linked to azo dye degradation using yeast symbionts of termite guts: A critical review. In Energy Reports (Vol. 8, pp. 7557–7581). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2022.05.240Amo-Duodu, G., Buthelezi, K. S., Rathilal, S., Mahlangu, T. P., Chollom, M. N., & Tetteh, E. K. (2023). Biostimulation of anaerobic digested wastewater using magnetic nanoparticles and an external magnetic field for biogas enhancement. Biofuels, Bioproducts and Biorefining, 17(2), 324–331. https://doi.org/10.1002/bbb.2409Aspectos generales del Sector agroindustrial de la caña So mos azúcar Contenido. (n.d.). Bogotá DC. (n.d.). Boletín técnico.Cabrita, T. M., & Santos, M. T. (2023). Biochemical Methane Potential Assays for Organic Wastes as an Anaerobic Digestion Feedstock. Sustainability (Switzerland), 15(15). https://doi.org/10.3390/su151511573Calderón-Márquez, A. J. (2023). Biogas utilization from municipal solid waste in developing countries towards the transition to sustainable development – The Colombian case | Aprovechamiento de biogás a partir de residuos sólidos municipales en países en desarrollo hacia la transición a. DYNA (Colombia), 90(227), 147–156. https://doi.org/10.15446/dyna.v90n227.107131Campo, G., Cerutti, A., Zanetti, M., & Ruffino, B. (2024). Feasibility of biogas upgrading at a WWTP after pre-treatment application: Techno-economic assessment validation with pilot test data. Journal of Environmental Management, 370. https://doi.org/10.1016/j.jenvman.2024.122780Campo, G., Ruffino, B., Reyes, A., & Zanetti, M. (2023). Water-Energy Nexus in the Antofagasta Mining District: Options for Municipal Wastewater Reuse from a Nearly Energy-Neutral WWTP. Water (Switzerland), 15(6). https://doi.org/10.3390/w15061221Chaouali, S., Muchangos, L. S. D., Ito, L., & Tokai, A. (2024). Assessment of the Environmental Impacts of Wastewater Treatment in Tunisia. Journal of Water and Environment Technology, 22(2), 61–74. https://doi.org/10.2965/JWET.22-119Chen, J. W., Chan, Y. J., Arumugasamy, S. K., & Yazdi, S. K. (2023). Process modelling and optimisation of methane yield from palm oil mill effluent using response surface methodology and artificial neural network. Journal of Water Process Engineering, 52. https://doi.org/10.1016/j.jwpe.2023.103493Chong, D. J. S., Chan, Y. J., Arumugasamy, S. K., Yazdi, S. K., & Lim, J. W. (2023). Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production from palm oil mill effluent (POME). Energy, 266. https://doi.org/10.1016/j.energy.2022.126449Choudhury, A. R., Singh, N., Lalwani, J., Srinivasan, H., & Palani, S. G. (2024). Enhancing biomethanation performance through co-digestion of diverse organic wastes: a comprehensive study on substrate optimization, inoculum selection, and microbial community analysis. Environmental Science and Pollution Research, 31(23), 34622–34646. https://doi.org/10.1007/s11356-024-33557-7Cinar, S., Cinar, S. Ö., Ng, S. M., & Kuchta, K. (2022). Analysis Phase of Lean Six Sigma Methodology with Scaled-Down Laboratory Experiments for an Industrial-Scale Biogas Plant. Designs, 6(3). https://doi.org/10.3390/designs6030050Cinar, S., Önen Cinar, S., Staudter, C., & Kuchta, K. (2022). Operational Excellence in a Biogas Plant through Integration of Lean Six Sigma Methodology. Designs, 6(4). https://doi.org/10.3390/designs6040061Corigliano, O., Iannuzzi, M., Pellegrino, C., D’Amico, F., Pagnotta, L., & Fragiacomo, P. (2023). Enhancing Energy Processes and Facilities Redesign in an Anaerobic Digestion Plant for Biomethane Production. Energies, 16(15). https://doi.org/10.3390/en16155782Coutu, A., Mottelet, S., Guérin, S., Rocher, V., Pauss, A., & Ribeiro, T. (2022). Methane yield optimization using mix response design and bootstrapping: application to solid-state anaerobic co-digestion process of cattle manure and damp grass. Bioresource Technology Reports, 17. https://doi.org/10.1016/j.biteb.2021.100883Crujeira, A. T., Trancoso, M. A., Eusébio, A., Oliveira, A. C., Passarinho, P. C., Abreu, M., Marques, I. P., Marques, P. A. S. S., Marques, S., Albergaria, H., Gírio, F., & Moura, P. (2023). Admissibility Grid to Support the Decision for the Preferential Routing of Portuguese Endogenous Waste Biomass for the Production of Biogas, Advanced Biofuels, Electricity and Heat. Biomass (Switzerland), 3(4), 336–366. https://doi.org/10.3390/biomass3040021Cuadrado-Osorio, P. D., Ramírez-Mejía, J. M., Mejía-Avellaneda, L. F., Mesa, L., & Bautista, E. J. (2022). Agro-industrial residues for microbial bioproducts: A key booster for bioeconomy. In Bioresource Technology Reports (Vol. 20). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2022.101232Cucina, M., Castro, L., Escalante, H., Ferrer, I., & Garfí, M. (2021). Benefits and risks of agricultural reuse of digestates from plastic tubular digesters in Colombia. Waste Management, 135, 220–228. https://doi.org/10.1016/j.wasman.2021.09.003Dabiri, S., Kumar, P., & Rauch, W. (2023). Integrating biokinetics with computational fluid dynamics for energy performance analysis in anaerobic digestion. Bioresource Technology, 373. https://doi.org/10.1016/j.biortech.2023.128728de Castro e Silva, H. L., Huamán Córdova, M. E., Barros, R. M., Tiago Filho, G. L., Silva Lora, E. E., Moreira Santos, A. H., dos Santos, I. F. S., de Oliveira Botan, M. C. C., Pedreira, J. R., & Flauzino, B. K. (2022). Lab-scale and economic analysis of biogas production from swine manure. Renewable Energy, 186, 350–365. https://doi.org/10.1016/j.renene.2021.12.114De, P., Ambiental, S., Social, R., Validación, E., Fajardo López -Presidente, J., Corina, E., Moreno -Vicepresidenta Ejecutiva Autor, Z., Fernando Naranjo -Director, J., Técnica, Á., Manuel, J., De, H.-S., & Comunicaciones, R. S. E. (n.d.). PRODUCCIÓN DEL INFORME Porkcolombia-Fondo Nacional de la Porcicultura.El Bari, H., & Habchi, S. (2024). Enhancing biogas production from vinasse through optimizing hydraulic retention time and added load using the response surface methodology. Heliyon, 10(19). https://doi.org/10.1016/j.heliyon.2024.e38967Ellacuriaga, M., González, R., & Gómez, X. (2024). Feasibility of coupling hydrogen and methane production in WWTP: Simulation of sludge and food wastes co-digestion. Energy Nexus, 14. https://doi.org/10.1016/j.nexus.2024.100285Esteban Cantillo, O. J., & Quesada, B. (2022). Solid Waste Characterization and Management in a Highly Vulnerable Tropical City. Sustainability (Switzerland), 14(24). https://doi.org/10.3390/su142416339Fountoulakis, M. S., Frkova, Z., Lemaigre, S., Goux, X., Calusinska, M., & Roussel, J. (2024). Enhancement of anaerobic digestion of dairy wastewater by addition of conductive materials with or without the combination of external voltage application. Journal of Chemical Technology and Biotechnology, 99(8), 1837–1846. https://doi.org/10.1002/jctb.7685Grandas Tavera, C., Raab, T., & Holguin Trujillo, L. (2023). Valorization of biogas digestate as organic fertilizer for closing the loop on the economic viability to develop biogas projects in Colombia. Cleaner and Circular Bioeconomy, 4. https://doi.org/10.1016/j.clcb.2022.100035Guerrero-Martin, C. A., Rojas-Sanchez, A. N., Cruz-Pinzón, D. F., Milquez-Sanabria, H. A., Sotelo-Tobon, D. L., da Cunha, A. L. R., Salinas-Silva, R., Camacho-Galindo, S., Costa Gomes, V. J., & Cunha Malagueta, D. (2024). The Advantage of Citrus Residues as Feedstock for Biogas Production: A Two-Stage Anaerobic Digestion System. Energies, 17(6). https://doi.org/10.3390/en17061315Hellal, M. S., El-Kamah, H. M., & Doma, H. S. (2024). High-performance internal circulation anaerobic granular sludge reactor for cattle slaughterhouse wastewater treatment and simultaneous biogas production. BMC Biotechnology, 24(1). https://doi.org/10.1186/s12896-024-00849-2I N F O R M E N A C I O N A L D E DISPOSICIÓN FINAL DISPOSICIÓN FINAL DE RESIDUOS DE RESIDUOS SÓLIDOS 2023 SÓLIDOS 2023. (n.d.).Informe de Gestión 2023 Colanta - Navegable Landing. (n.d.).INFORME DE SOSTENIBILIDAD 2023 Si lo nutres, es posible. (n.d.). www.alqueria.com.coInforme-Sostenibilidad-aliar2022. (n.d.).Juanpera, M., Ferrer-Martí, L., Diez-Montero, R., Ferrer, I., Castro, L., Escalante, H., & Garfí, M. (2022a). A robust multicriteria analysis for the post-treatment of digestate from low-tech digesters. Boosting the circular bioeconomy of small-scale farms in Colombia. Renewable and Sustainable Energy Reviews, 166. https://doi.org/10.1016/j.rser.2022.112638Juanpera, M., Ferrer-Martí, L., Diez-Montero, R., Ferrer, I., Castro, L., Escalante, H., & Garfí, M. (2022b). A robust multicriteria analysis for the post-treatment of digestate from low-tech digesters. Boosting the circular bioeconomy of small-scale farms in Colombia. Renewable and Sustainable Energy Reviews, 166. https://doi.org/10.1016/j.rser.2022.112638Karolinczak, B., Walczak, J., Bogacka, M., & Zubrowska-Sudol, M. (2024). Life Cycle Assessment of sewage sludge mono-digestion and co-digestion with the organic fraction of municipal solid waste at a wastewater treatment plant. Science of the Total Environment, 907. https://doi.org/10.1016/j.scitotenv.2023.167801Kasinath, A., Fudala-Ksiazek, S., Szopinska, M., Bylinski, H., Artichowicz, W., Remiszewska-Skwarek, A., & Luczkiewicz, A. (2021). Biomass in biogas production: Pretreatment and codigestion. Renewable and Sustainable Energy Reviews, 150. https://doi.org/10.1016/j.rser.2021.111509Kuboń, M., Komorowska, M., Niemiec, M., Sikora, J., Szeląg-Sikora, A., Olech, E., Molik, E., & Gajda, J. (2024). The Impact of Biochar Additives and Fat-Emulsifying Substances on the Efficiency of the Slaughterhouse Waste Biogasing Process. Energies, 17(13). https://doi.org/10.3390/en17133065Lekše, N., Griessler Bulc, T., & Žgajnar Gotvajn, A. (2024). The Potential of Ozonation to Reduce Impact of Waste Sludge-Entrapped Microplastics to Biogas Production. Ozone: Science and Engineering, 46(3), 255–266. https://doi.org/10.1080/01919512.2024.2332286Lights-On-Energy-Needs-in-Latin-America-and-the-Caribbean-to-2040. (n.d.).Lima, D., Appleby, G., & Li, L. (2023). A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants. Energies, 16(5). https://doi.org/10.3390/en16052369Lippelt, J., & Sindram, M. (2014). Global Energy Consumption. https://www.researchgate.net/publication/227384051López-Dávila, E., Hernández, J. J., López González, L. M., Barrera Cardoso, E. L., Amarante, E. B., Contreras Velázquez, L. M., & Romero-Romero, O. (2022). Biochemical methane potential of agro-wastes as a renewable source alternative for electrical energy production in Cuba | Potencial bioquímico de metano de desechos agrícolas como fuente renovable alternativa para la producción de energía eléctrica en Cub. Ciencia Tecnologia Agropecuaria, 23(1). https://doi.org/10.21930/rcta.vol23_num1_art:1890Mikhailova, L., Dubik, V., Dumanskyi, O., & Kozak, O. (2024). Possibilities of landfills and solid waste sites for energy production in Ukraine. Machinery and Energetics, 15(1), 86–94. https://doi.org/10.31548/machinery/1.2024.86Minardi, M., Marocco, P., & Gandiglio, M. (2023). Carbon recovery from biogas through upgrading and methanation: A techno-economic and environmental assessment. Journal of CO2 Utilization, 78. https://doi.org/10.1016/j.jcou.2023.102632Odejobi, O. J., Odekanle, E. L., Bamimore, A., Falowo, O. A., & Akeredolu, F. (2022). Anaerobic digestion of abattoir wastes for biogas production: optimization via performance evaluation comparison. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2122150Oladejo, O. S., Dahunsi, S. O., Odekanle, E. L., Odeleye, O. A., Aroyewon, O. S., Oladele, A. O., Fala, G. S., Olanipekun, A. A., Abiola, A. O., Ojediran, J. O., Ajayi, O. E., & Olawuni, O. A. (2025). Cattle rumen inoculated Gliricidia sepium with poultry manure: Pretreatment, biogas production, and optimization. Cleaner Engineering and Technology, 25. https://doi.org/10.1016/j.clet.2025.100923Olatunji, K. O., & Madyira, D. M. (2023). Effect of acidic pretreatment on the microstructural arrangement and anaerobic digestion of Arachis hypogea shells; and process parameters optimization using response surface methodology. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15145Otieno, E. O., Kiplimo, R., & Mutwiwa, U. (2023). Optimization of anaerobic digestion parameters for biogas production from pineapple wastes co-digested with livestock wastes. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e14041Pardo Cuervo, O. H., Rosas, C. A., & Romanelli, G. P. (2024). Valorization of residual lignocellulosic biomass in South America: a review. Environmental Science and Pollution Research, 31(32), 44575–44607. https://doi.org/10.1007/s11356-024-33968-6Pasalari, H., Ghasemian, M., Esrafili, A., Gholami, M., & Farzadkia, M. (2022). Upgrading the biogas production from raw landfill leachate using O<inf>3</inf>/H<inf>2</inf>O<inf>2</inf> pretreatment process: Modeling, optimization and anaerobic digestion performance. Ecotoxicology and Environmental Safety, 247. https://doi.org/10.1016/j.ecoenv.2022.114222Pereira, F., & Silva, C. (2023). Energetic Valorization of Bio-Waste from Municipal Solid Waste in Porto Santo Island. Clean Technologies, 5(1), 233–258. https://doi.org/10.3390/cleantechnol5010014Presta-Novello, D., Salazar-Camacho, N. A., Delgadillo-Mirquez, L., Hernández-Sarabia, H. M., & Álvarez-Bustos, M. D. P. (2023). Sustainable Development in the Colombian Post-Conflict—The Impact of Renewable Energies in Coffee-Growing Women. Sustainability (Switzerland), 15(2). https://doi.org/10.3390/su15021618Pupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., & Pourkashanian, M. (2019). Large scale integration of renewable energy sources (RES) in the future Colombian energy system. Energy, 186, 115805. https://doi.org/10.1016/J.ENERGY.2019.07.135Ramón, A. A., Vásquez, J. E., Delgado, J. M., Domínguez-Carvajal, D., Mosquera-Mena, A. M., Molina, F., & Peñuela-Vásquez, M. (2023). Evaluation of Potential Substrates for Biogas Production in Colombia using Anaerobic Digestion Systems | Evaluación de sustratos potenciales para la producción de biogás en Colombia utilizando sistemas de digestión anaerobia. Ingenieria e Investigacion, 43(2). https://doi.org/10.15446/ING.INVESTIG.100834Rasouli, M., & Ataeiyan, B. (2024). Investigation and Optimization of Operational Conditions of Anaerobic Digestion Process for Enhanced Biogas Production Yield in a CSTR Using RSM. International Journal of Energy Research, 2024. https://doi.org/10.1155/2024/9158477Rocha-Meneses, L., Luna-delRisco, M., González, C. A., Moncada, S. V., Moreno, A., Sierra-Del Rio, J., & Castillo-Meza, L. E. (2023). An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia. Energies, 16(16). https://doi.org/10.3390/en16165901Rodríguez Romero, T. E., Cabello Eras, J. J., Sagastume Gutierrez, A., Mendoza Fandiño, J. M., & Rueda Bayona, J. G. (2025). The Energy Potential of Agricultural Biomass Residues for Household Use in Rural Areas in the Department La Guajira (Colombia). Sustainability (Switzerland), 17(3). https://doi.org/10.3390/su17030974Ruiz, L. M., Fernández, M., Genaro, A., Martín-Pascual, J., & Zamorano, M. (2023). Multi-Parametric Analysis Based on Physico-Chemical Characterization and Biochemical Methane Potential Estimation for the Selection of Industrial Wastes as Co-Substrates in Anaerobic Digestion. Energies, 16(14). https://doi.org/10.3390/en16145444Ruíz-Bastidas, R. C., & Cadavid-Rodríguez, L. S. (2023). Effect of nutrients, inoculum and co-substrates on methane potential of cattle manure | Efecto de nutrientes, inóculo y cosustratos sobre el potencial de metano del estiércol bovino. Revista Facultad de Ingenieria, 108, 41–53. https://doi.org/10.17533/udea.redin.20220990Sánchez Nocete, E., & Pérez Rodríguez, J. (2022). A Simple Methodology for Estimating the Potential Biomethane Production in a Region: Application in a Case Study. Sustainability (Switzerland), 14(23). https://doi.org/10.3390/su142315978Siddiqui, M. I., Farooqi, I. H., Basheer, F., Rameez, H., & Isa, M. H. (2023). Pretreatment of Slaughterhouse Effluent Treatment Plant Sludge Using Electro-Fenton Process for Anaerobic Digestion. Sustainability (Switzerland), 15(4). https://doi.org/10.3390/su15043159Superintendencia de Servicios Públicos Domiciliarios. (22 de diciembre de 2023). Storymaps Arcgis. Obtenido de ArcGIS StoryMaps Web site: https://storymaps.arcgis.com/stories/36bc9c665c6740cf87ca495f7c1b2aeaTavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., & Castro, L. (2023a). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173. https://doi.org/10.1016/j.rser.2022.113097Tavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., & Castro, L. (2023b). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173. https://doi.org/10.1016/j.rser.2022.113097Tian, Y., Liu, S., Guo, Z., Wu, N., Liang, J., Zhao, R., Hao, L., & Zeng, M. (2022). Insight into Greenhouse Gases Emissions and Energy Consumption of Different Full-Scale Wastewater Treatment Plants via ECAM Tool. International Journal of Environmental Research and Public Health, 19(20). https://doi.org/10.3390/ijerph192013387Tjutju, N. A. S., Ammenberg, J., & Lindfors, A. (2024). Biogas potential studies: A review of their scope, approach, and relevance. Renewable and Sustainable Energy Reviews, 201. https://doi.org/10.1016/j.rser.2024.114631Triviño-Pineda, J.-S., Sanchez-Rodriguez, A., & Peláez, N. P. (2024). Biogas production from organic solid waste through anaerobic digestion: A meta-analysis. Case Studies in Chemical and Environmental Engineering, 9. https://doi.org/10.1016/j.cscee.2024.100618Twi-Yeboah, N., Osei, D., Dontoh, W. H., Asamoah, G. A., Baffoe, J., & Danquah, M. K. (2024). Enhancing Energy Efficiency and Resource Recovery in Wastewater Treatment Plants. Energies, 17(13). https://doi.org/10.3390/en17133060van den Oever, A. E. M., Cardellini, G., Sels, B. F., & Messagie, M. (2021). Life cycle environmental impacts of compressed biogas production through anaerobic digestion of manure and municipal organic waste. Journal of Cleaner Production, 306. https://doi.org/10.1016/j.jclepro.2021.127156Digestión anaerobiaAnaerobic digestionPlantas de tratamiento de aguas residualesSewage disposal plantsBiogásBiogasResiduos orgánicosOrganic wastesPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/2624be5e-5349-4c41-85bb-fb33f1800009/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/d64896a7-16ba-4fe8-8d0f-6afe318db2dd/download5643bfd9bcf29d560eeec56d584edaa9MD53falseAnonymousREADORIGINALMachadoArango_2025_Biotransformacion_anaerobia_ColombiaMachadoArango_2025_Biotransformacion_anaerobia_ColombiaTrabajo de grado de especializaciónapplication/pdf766086https://bibliotecadigital.udea.edu.co/bitstreams/e6c0d7d3-7878-4d4f-bee2-6e12cc2222f3/download1f75a4e06a9b988042fc3d2388d186e4MD54trueAnonymousREADTEXTMachadoArango_2025_Biotransformacion_anaerobia_Colombia.txtMachadoArango_2025_Biotransformacion_anaerobia_Colombia.txtExtracted texttext/plain92474https://bibliotecadigital.udea.edu.co/bitstreams/4cebcc46-416f-4709-9c76-e8e0163c80e9/download51d1e3a67472c8a8c42c98399c6054cdMD55falseAnonymousREADTHUMBNAILMachadoArango_2025_Biotransformacion_anaerobia_Colombia.jpgMachadoArango_2025_Biotransformacion_anaerobia_Colombia.jpgGenerated Thumbnailimage/jpeg6809https://bibliotecadigital.udea.edu.co/bitstreams/421d7eb6-ac3e-46b0-86ac-48cabccedc45/download68417667ae98085996aae65d5b65e7fbMD56falseAnonymousREAD10495/46937oai:bibliotecadigital.udea.edu.co:10495/469372025-08-05 04:07:21.297http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=