Selección de entradas y salidas en DEA mediante algoritmos genéticos multiobjetivo

ABSTRACT : This study presents a method for feature selection in datasets that suffer from high dimensionality, aimed at evaluating relative efficiency using the nonparametric technique known as Data Envelopment Analysis (DEA). This application is implemented using genetic algorithms for multi-objec...

Full description

Autores:
Ramírez Upegui, Nelson Fabián
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/44515
Acceso en línea:
https://hdl.handle.net/10495/44515
Palabra clave:
Análisis de datos
Data analysis
Algoritmos genéticos
Genetic algorithms
Optimización combinatoria
Combinatorial optimization
http://vocabularies.unesco.org/thesaurus/concept2214
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_582d8b72bb6b0aec7c232dc3620a3b3e
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/44515
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Selección de entradas y salidas en DEA mediante algoritmos genéticos multiobjetivo
title Selección de entradas y salidas en DEA mediante algoritmos genéticos multiobjetivo
spellingShingle Selección de entradas y salidas en DEA mediante algoritmos genéticos multiobjetivo
Análisis de datos
Data analysis
Algoritmos genéticos
Genetic algorithms
Optimización combinatoria
Combinatorial optimization
http://vocabularies.unesco.org/thesaurus/concept2214
title_short Selección de entradas y salidas en DEA mediante algoritmos genéticos multiobjetivo
title_full Selección de entradas y salidas en DEA mediante algoritmos genéticos multiobjetivo
title_fullStr Selección de entradas y salidas en DEA mediante algoritmos genéticos multiobjetivo
title_full_unstemmed Selección de entradas y salidas en DEA mediante algoritmos genéticos multiobjetivo
title_sort Selección de entradas y salidas en DEA mediante algoritmos genéticos multiobjetivo
dc.creator.fl_str_mv Ramírez Upegui, Nelson Fabián
dc.contributor.advisor.none.fl_str_mv Villegas Ramirez, Juan Guillermo
dc.contributor.author.none.fl_str_mv Ramírez Upegui, Nelson Fabián
dc.subject.unesco.none.fl_str_mv Análisis de datos
Data analysis
topic Análisis de datos
Data analysis
Algoritmos genéticos
Genetic algorithms
Optimización combinatoria
Combinatorial optimization
http://vocabularies.unesco.org/thesaurus/concept2214
dc.subject.lemb.none.fl_str_mv Algoritmos genéticos
Genetic algorithms
Optimización combinatoria
Combinatorial optimization
dc.subject.unescouri.none.fl_str_mv http://vocabularies.unesco.org/thesaurus/concept2214
description ABSTRACT : This study presents a method for feature selection in datasets that suffer from high dimensionality, aimed at evaluating relative efficiency using the nonparametric technique known as Data Envelopment Analysis (DEA). This application is implemented using genetic algorithms for multi-objective optimization, applying a basic binary structure to select the variables from the dataset that will enter the DEA evaluation. The selection process is carried out through crossover and mutation of an initially randomly selected population from the solution space. Four different well-known multiobjective genetic algorithms are used and compared using data sets from the DEA literature.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-01-29T16:45:01Z
dc.date.available.none.fl_str_mv 2025-01-29T16:45:01Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/44515
url https://hdl.handle.net/10495/44515
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 19 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería. Especialización en Analítica y Ciencia de Datos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/f9d5bfb6-02f4-4b4e-998e-1547f3e74e7b/download
https://bibliotecadigital.udea.edu.co/bitstreams/39c05b7e-6b87-4306-aa36-c5c0c734247d/download
https://bibliotecadigital.udea.edu.co/bitstreams/273ec828-fa4f-4439-9f81-7b223354e4eb/download
https://bibliotecadigital.udea.edu.co/bitstreams/4283aafa-161c-45b9-a72b-559866c74e8c/download
bitstream.checksum.fl_str_mv 4cb14b061a8e8dadc7a616b9091c6cc1
8a4605be74aa9ea9d79846c1fba20a33
6fa5e732fb925935f54895d1051b6989
944bf79bd183d6d9289e9fb006e7d999
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052564592721920
spelling Villegas Ramirez, Juan GuillermoRamírez Upegui, Nelson Fabián2025-01-29T16:45:01Z2025-01-29T16:45:01Z2024https://hdl.handle.net/10495/44515ABSTRACT : This study presents a method for feature selection in datasets that suffer from high dimensionality, aimed at evaluating relative efficiency using the nonparametric technique known as Data Envelopment Analysis (DEA). This application is implemented using genetic algorithms for multi-objective optimization, applying a basic binary structure to select the variables from the dataset that will enter the DEA evaluation. The selection process is carried out through crossover and mutation of an initially randomly selected population from the solution space. Four different well-known multiobjective genetic algorithms are used and compared using data sets from the DEA literature.EspecializaciónEspecialista en Analítica y Ciencia de Datos19 páginasapplication/pdfspaUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Especialización en Analítica y Ciencia de Datoshttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Selección de entradas y salidas en DEA mediante algoritmos genéticos multiobjetivoArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/draftAnálisis de datosData analysisAlgoritmos genéticosGenetic algorithmsOptimización combinatoriaCombinatorial optimizationhttp://vocabularies.unesco.org/thesaurus/concept2214PublicationORIGINALRamirezNelson_2024_SelecciónCaracterísticasAG.pdfRamirezNelson_2024_SelecciónCaracterísticasAG.pdfTrabajo de grado de especializaciónapplication/pdf1751464https://bibliotecadigital.udea.edu.co/bitstreams/f9d5bfb6-02f4-4b4e-998e-1547f3e74e7b/download4cb14b061a8e8dadc7a616b9091c6cc1MD55trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/39c05b7e-6b87-4306-aa36-c5c0c734247d/download8a4605be74aa9ea9d79846c1fba20a33MD56falseAnonymousREADTEXTRamirezNelson_2024_SelecciónCaracterísticasAG.pdf.txtRamirezNelson_2024_SelecciónCaracterísticasAG.pdf.txtExtracted texttext/plain84262https://bibliotecadigital.udea.edu.co/bitstreams/273ec828-fa4f-4439-9f81-7b223354e4eb/download6fa5e732fb925935f54895d1051b6989MD57falseAnonymousREADTHUMBNAILRamirezNelson_2024_SelecciónCaracterísticasAG.pdf.jpgRamirezNelson_2024_SelecciónCaracterísticasAG.pdf.jpgGenerated Thumbnailimage/jpeg6263https://bibliotecadigital.udea.edu.co/bitstreams/4283aafa-161c-45b9-a72b-559866c74e8c/download944bf79bd183d6d9289e9fb006e7d999MD58falseAnonymousREAD10495/44515oai:bibliotecadigital.udea.edu.co:10495/445152025-03-27 00:23:04.219https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=