Using MODESTR to download, import and clean species distribution records

ABSTRACT: 1. Data quality is one of the highest priorities for species distribution data warehouses, as well as one of the main concerns of data users. There is the need, however, for computational procedures with the facility to automatically or semi-automatically identify and correct errors and to...

Full description

Autores:
Pelayo Villamil, Patricia
García Roselló, Emilio
Guisande, Cástor
Heine, Juergen
Manjarrés Hernández, Ana
González Vilas, Luis
Vaamonde, Antonio
González Dacosta, Jacinto
Granado Lorencio, Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/37297
Acceso en línea:
https://hdl.handle.net/10495/37297
Palabra clave:
Almacenamiento de información
Information storage
Calidad de los datos
Data quality
Data cleaning
Geographic records
http://aims.fao.org/aos/agrovoc/c_2fe8a00c
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id UDEA2_56f01a081a1e3af52e4645ee444a92b3
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/37297
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Using MODESTR to download, import and clean species distribution records
title Using MODESTR to download, import and clean species distribution records
spellingShingle Using MODESTR to download, import and clean species distribution records
Almacenamiento de información
Information storage
Calidad de los datos
Data quality
Data cleaning
Geographic records
http://aims.fao.org/aos/agrovoc/c_2fe8a00c
title_short Using MODESTR to download, import and clean species distribution records
title_full Using MODESTR to download, import and clean species distribution records
title_fullStr Using MODESTR to download, import and clean species distribution records
title_full_unstemmed Using MODESTR to download, import and clean species distribution records
title_sort Using MODESTR to download, import and clean species distribution records
dc.creator.fl_str_mv Pelayo Villamil, Patricia
García Roselló, Emilio
Guisande, Cástor
Heine, Juergen
Manjarrés Hernández, Ana
González Vilas, Luis
Vaamonde, Antonio
González Dacosta, Jacinto
Granado Lorencio, Carlos
dc.contributor.author.none.fl_str_mv Pelayo Villamil, Patricia
García Roselló, Emilio
Guisande, Cástor
Heine, Juergen
Manjarrés Hernández, Ana
González Vilas, Luis
Vaamonde, Antonio
González Dacosta, Jacinto
Granado Lorencio, Carlos
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Ictiología
dc.subject.lemb.none.fl_str_mv Almacenamiento de información
Information storage
topic Almacenamiento de información
Information storage
Calidad de los datos
Data quality
Data cleaning
Geographic records
http://aims.fao.org/aos/agrovoc/c_2fe8a00c
dc.subject.agrovoc.none.fl_str_mv Calidad de los datos
Data quality
dc.subject.proposal.spa.fl_str_mv Data cleaning
Geographic records
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_2fe8a00c
description ABSTRACT: 1. Data quality is one of the highest priorities for species distribution data warehouses, as well as one of the main concerns of data users. There is the need, however, for computational procedures with the facility to automatically or semi-automatically identify and correct errors and to seamlessly integrate expert knowledge and automated processes. 2. New version MODESTR 2.0 (http://www.ipez.es/ModestR) makes it easy to download occurrence records from the Global Biodiversity Information Facility (GBIF), to import shape files with species range maps such as those available at the website of the International Union for Conservation of Nature (IUCN), to import KML files, to import CSV files with records of the users, to import ESRI ASCII grid probability files generated by distribution modelling software and show the resulting records on a map. 3. MODESTR supports five different methods for cleaning the data: (i) data filtering when downloading records from GBIF, (ii) habitat data filtering, (iii) taxonomic disambiguation filtering, (iv) automatic spatial dispersion and environmental layer filters and (v) custom data filtering.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2023-11-13T21:31:46Z
dc.date.available.none.fl_str_mv 2023-11-13T21:31:46Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Guerrero, M. J., Bedoya, C. L., López, J. D., Daza, J. M., & Isaza, C. (2023). Acoustic animal identification using unsupervised learning. Methods in Ecology and Evolution, 14(6), 1500–1514. https://doi.org/10.1111/2041-210X.14103
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/37297
dc.identifier.doi.none.fl_str_mv 10.1111/2041-210X.12209
dc.identifier.eissn.none.fl_str_mv 2041-210X
identifier_str_mv Guerrero, M. J., Bedoya, C. L., López, J. D., Daza, J. M., & Isaza, C. (2023). Acoustic animal identification using unsupervised learning. Methods in Ecology and Evolution, 14(6), 1500–1514. https://doi.org/10.1111/2041-210X.14103
10.1111/2041-210X.12209
2041-210X
url https://hdl.handle.net/10495/37297
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Methods. Ecol. Evol.
dc.relation.citationendpage.spa.fl_str_mv 713
dc.relation.citationissue.spa.fl_str_mv 7
dc.relation.citationstartpage.spa.fl_str_mv 708
dc.relation.citationvolume.spa.fl_str_mv 5
dc.relation.ispartofjournal.spa.fl_str_mv Methods in Ecology and Evolution
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Wiley
British Ecological Society
dc.publisher.place.spa.fl_str_mv Hoboken, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/e9966d4b-b04c-4dbb-ae8f-af5306d82dc6/download
https://bibliotecadigital.udea.edu.co/bitstreams/ce3a9aed-dd14-4f0b-ae5a-5ce57b7b9791/download
https://bibliotecadigital.udea.edu.co/bitstreams/53f544f5-e5aa-4544-a656-7fd4c40669b7/download
https://bibliotecadigital.udea.edu.co/bitstreams/93c7b69d-d621-4f74-b665-38bdec24a755/download
https://bibliotecadigital.udea.edu.co/bitstreams/d257fbcf-b67a-4116-ae61-0bfab5a1a86f/download
bitstream.checksum.fl_str_mv 8f437557f4dc19c8a5b42c4da68501f3
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
9ac129ba5d1a15f204c9ed5b02bb6ac9
d624d38a40bf4643af1c253dd4268c35
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052326015467520
spelling Pelayo Villamil, PatriciaGarcía Roselló, EmilioGuisande, CástorHeine, JuergenManjarrés Hernández, AnaGonzález Vilas, LuisVaamonde, AntonioGonzález Dacosta, JacintoGranado Lorencio, CarlosGrupo de Ictiología2023-11-13T21:31:46Z2023-11-13T21:31:46Z2014Guerrero, M. J., Bedoya, C. L., López, J. D., Daza, J. M., & Isaza, C. (2023). Acoustic animal identification using unsupervised learning. Methods in Ecology and Evolution, 14(6), 1500–1514. https://doi.org/10.1111/2041-210X.14103https://hdl.handle.net/10495/3729710.1111/2041-210X.122092041-210XABSTRACT: 1. Data quality is one of the highest priorities for species distribution data warehouses, as well as one of the main concerns of data users. There is the need, however, for computational procedures with the facility to automatically or semi-automatically identify and correct errors and to seamlessly integrate expert knowledge and automated processes. 2. New version MODESTR 2.0 (http://www.ipez.es/ModestR) makes it easy to download occurrence records from the Global Biodiversity Information Facility (GBIF), to import shape files with species range maps such as those available at the website of the International Union for Conservation of Nature (IUCN), to import KML files, to import CSV files with records of the users, to import ESRI ASCII grid probability files generated by distribution modelling software and show the resulting records on a map. 3. MODESTR supports five different methods for cleaning the data: (i) data filtering when downloading records from GBIF, (ii) habitat data filtering, (iii) taxonomic disambiguation filtering, (iv) automatic spatial dispersion and environmental layer filters and (v) custom data filtering.COL00787046application/pdfengWileyBritish Ecological SocietyHoboken, Estados Unidoshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Using MODESTR to download, import and clean species distribution recordsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAlmacenamiento de informaciónInformation storageCalidad de los datosData qualityData cleaningGeographic recordshttp://aims.fao.org/aos/agrovoc/c_2fe8a00cMethods. Ecol. Evol.71377085Methods in Ecology and EvolutionPublicationORIGINALPelayoPatricia_2014_UsingModestr.pdfPelayoPatricia_2014_UsingModestr.pdfArtículo de investigaciónapplication/pdf1048044https://bibliotecadigital.udea.edu.co/bitstreams/e9966d4b-b04c-4dbb-ae8f-af5306d82dc6/download8f437557f4dc19c8a5b42c4da68501f3MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/ce3a9aed-dd14-4f0b-ae5a-5ce57b7b9791/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/53f544f5-e5aa-4544-a656-7fd4c40669b7/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTPelayoPatricia_2014_UsingModestr.pdf.txtPelayoPatricia_2014_UsingModestr.pdf.txtExtracted texttext/plain32400https://bibliotecadigital.udea.edu.co/bitstreams/93c7b69d-d621-4f74-b665-38bdec24a755/download9ac129ba5d1a15f204c9ed5b02bb6ac9MD54falseAnonymousREADTHUMBNAILPelayoPatricia_2014_UsingModestr.pdf.jpgPelayoPatricia_2014_UsingModestr.pdf.jpgGenerated Thumbnailimage/jpeg15845https://bibliotecadigital.udea.edu.co/bitstreams/d257fbcf-b67a-4116-ae61-0bfab5a1a86f/downloadd624d38a40bf4643af1c253dd4268c35MD55falseAnonymousREAD10495/37297oai:bibliotecadigital.udea.edu.co:10495/372972025-03-26 20:38:05.121https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=