Using MODESTR to download, import and clean species distribution records
ABSTRACT: 1. Data quality is one of the highest priorities for species distribution data warehouses, as well as one of the main concerns of data users. There is the need, however, for computational procedures with the facility to automatically or semi-automatically identify and correct errors and to...
- Autores:
-
Pelayo Villamil, Patricia
García Roselló, Emilio
Guisande, Cástor
Heine, Juergen
Manjarrés Hernández, Ana
González Vilas, Luis
Vaamonde, Antonio
González Dacosta, Jacinto
Granado Lorencio, Carlos
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/37297
- Acceso en línea:
- https://hdl.handle.net/10495/37297
- Palabra clave:
- Almacenamiento de información
Information storage
Calidad de los datos
Data quality
Data cleaning
Geographic records
http://aims.fao.org/aos/agrovoc/c_2fe8a00c
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_56f01a081a1e3af52e4645ee444a92b3 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/37297 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Using MODESTR to download, import and clean species distribution records |
| title |
Using MODESTR to download, import and clean species distribution records |
| spellingShingle |
Using MODESTR to download, import and clean species distribution records Almacenamiento de información Information storage Calidad de los datos Data quality Data cleaning Geographic records http://aims.fao.org/aos/agrovoc/c_2fe8a00c |
| title_short |
Using MODESTR to download, import and clean species distribution records |
| title_full |
Using MODESTR to download, import and clean species distribution records |
| title_fullStr |
Using MODESTR to download, import and clean species distribution records |
| title_full_unstemmed |
Using MODESTR to download, import and clean species distribution records |
| title_sort |
Using MODESTR to download, import and clean species distribution records |
| dc.creator.fl_str_mv |
Pelayo Villamil, Patricia García Roselló, Emilio Guisande, Cástor Heine, Juergen Manjarrés Hernández, Ana González Vilas, Luis Vaamonde, Antonio González Dacosta, Jacinto Granado Lorencio, Carlos |
| dc.contributor.author.none.fl_str_mv |
Pelayo Villamil, Patricia García Roselló, Emilio Guisande, Cástor Heine, Juergen Manjarrés Hernández, Ana González Vilas, Luis Vaamonde, Antonio González Dacosta, Jacinto Granado Lorencio, Carlos |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Ictiología |
| dc.subject.lemb.none.fl_str_mv |
Almacenamiento de información Information storage |
| topic |
Almacenamiento de información Information storage Calidad de los datos Data quality Data cleaning Geographic records http://aims.fao.org/aos/agrovoc/c_2fe8a00c |
| dc.subject.agrovoc.none.fl_str_mv |
Calidad de los datos Data quality |
| dc.subject.proposal.spa.fl_str_mv |
Data cleaning Geographic records |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_2fe8a00c |
| description |
ABSTRACT: 1. Data quality is one of the highest priorities for species distribution data warehouses, as well as one of the main concerns of data users. There is the need, however, for computational procedures with the facility to automatically or semi-automatically identify and correct errors and to seamlessly integrate expert knowledge and automated processes. 2. New version MODESTR 2.0 (http://www.ipez.es/ModestR) makes it easy to download occurrence records from the Global Biodiversity Information Facility (GBIF), to import shape files with species range maps such as those available at the website of the International Union for Conservation of Nature (IUCN), to import KML files, to import CSV files with records of the users, to import ESRI ASCII grid probability files generated by distribution modelling software and show the resulting records on a map. 3. MODESTR supports five different methods for cleaning the data: (i) data filtering when downloading records from GBIF, (ii) habitat data filtering, (iii) taxonomic disambiguation filtering, (iv) automatic spatial dispersion and environmental layer filters and (v) custom data filtering. |
| publishDate |
2014 |
| dc.date.issued.none.fl_str_mv |
2014 |
| dc.date.accessioned.none.fl_str_mv |
2023-11-13T21:31:46Z |
| dc.date.available.none.fl_str_mv |
2023-11-13T21:31:46Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Guerrero, M. J., Bedoya, C. L., López, J. D., Daza, J. M., & Isaza, C. (2023). Acoustic animal identification using unsupervised learning. Methods in Ecology and Evolution, 14(6), 1500–1514. https://doi.org/10.1111/2041-210X.14103 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/37297 |
| dc.identifier.doi.none.fl_str_mv |
10.1111/2041-210X.12209 |
| dc.identifier.eissn.none.fl_str_mv |
2041-210X |
| identifier_str_mv |
Guerrero, M. J., Bedoya, C. L., López, J. D., Daza, J. M., & Isaza, C. (2023). Acoustic animal identification using unsupervised learning. Methods in Ecology and Evolution, 14(6), 1500–1514. https://doi.org/10.1111/2041-210X.14103 10.1111/2041-210X.12209 2041-210X |
| url |
https://hdl.handle.net/10495/37297 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Methods. Ecol. Evol. |
| dc.relation.citationendpage.spa.fl_str_mv |
713 |
| dc.relation.citationissue.spa.fl_str_mv |
7 |
| dc.relation.citationstartpage.spa.fl_str_mv |
708 |
| dc.relation.citationvolume.spa.fl_str_mv |
5 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Methods in Ecology and Evolution |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
6 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Wiley British Ecological Society |
| dc.publisher.place.spa.fl_str_mv |
Hoboken, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/e9966d4b-b04c-4dbb-ae8f-af5306d82dc6/download https://bibliotecadigital.udea.edu.co/bitstreams/ce3a9aed-dd14-4f0b-ae5a-5ce57b7b9791/download https://bibliotecadigital.udea.edu.co/bitstreams/53f544f5-e5aa-4544-a656-7fd4c40669b7/download https://bibliotecadigital.udea.edu.co/bitstreams/93c7b69d-d621-4f74-b665-38bdec24a755/download https://bibliotecadigital.udea.edu.co/bitstreams/d257fbcf-b67a-4116-ae61-0bfab5a1a86f/download |
| bitstream.checksum.fl_str_mv |
8f437557f4dc19c8a5b42c4da68501f3 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 9ac129ba5d1a15f204c9ed5b02bb6ac9 d624d38a40bf4643af1c253dd4268c35 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052326015467520 |
| spelling |
Pelayo Villamil, PatriciaGarcía Roselló, EmilioGuisande, CástorHeine, JuergenManjarrés Hernández, AnaGonzález Vilas, LuisVaamonde, AntonioGonzález Dacosta, JacintoGranado Lorencio, CarlosGrupo de Ictiología2023-11-13T21:31:46Z2023-11-13T21:31:46Z2014Guerrero, M. J., Bedoya, C. L., López, J. D., Daza, J. M., & Isaza, C. (2023). Acoustic animal identification using unsupervised learning. Methods in Ecology and Evolution, 14(6), 1500–1514. https://doi.org/10.1111/2041-210X.14103https://hdl.handle.net/10495/3729710.1111/2041-210X.122092041-210XABSTRACT: 1. Data quality is one of the highest priorities for species distribution data warehouses, as well as one of the main concerns of data users. There is the need, however, for computational procedures with the facility to automatically or semi-automatically identify and correct errors and to seamlessly integrate expert knowledge and automated processes. 2. New version MODESTR 2.0 (http://www.ipez.es/ModestR) makes it easy to download occurrence records from the Global Biodiversity Information Facility (GBIF), to import shape files with species range maps such as those available at the website of the International Union for Conservation of Nature (IUCN), to import KML files, to import CSV files with records of the users, to import ESRI ASCII grid probability files generated by distribution modelling software and show the resulting records on a map. 3. MODESTR supports five different methods for cleaning the data: (i) data filtering when downloading records from GBIF, (ii) habitat data filtering, (iii) taxonomic disambiguation filtering, (iv) automatic spatial dispersion and environmental layer filters and (v) custom data filtering.COL00787046application/pdfengWileyBritish Ecological SocietyHoboken, Estados Unidoshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Using MODESTR to download, import and clean species distribution recordsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAlmacenamiento de informaciónInformation storageCalidad de los datosData qualityData cleaningGeographic recordshttp://aims.fao.org/aos/agrovoc/c_2fe8a00cMethods. Ecol. Evol.71377085Methods in Ecology and EvolutionPublicationORIGINALPelayoPatricia_2014_UsingModestr.pdfPelayoPatricia_2014_UsingModestr.pdfArtículo de investigaciónapplication/pdf1048044https://bibliotecadigital.udea.edu.co/bitstreams/e9966d4b-b04c-4dbb-ae8f-af5306d82dc6/download8f437557f4dc19c8a5b42c4da68501f3MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/ce3a9aed-dd14-4f0b-ae5a-5ce57b7b9791/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/53f544f5-e5aa-4544-a656-7fd4c40669b7/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTPelayoPatricia_2014_UsingModestr.pdf.txtPelayoPatricia_2014_UsingModestr.pdf.txtExtracted texttext/plain32400https://bibliotecadigital.udea.edu.co/bitstreams/93c7b69d-d621-4f74-b665-38bdec24a755/download9ac129ba5d1a15f204c9ed5b02bb6ac9MD54falseAnonymousREADTHUMBNAILPelayoPatricia_2014_UsingModestr.pdf.jpgPelayoPatricia_2014_UsingModestr.pdf.jpgGenerated Thumbnailimage/jpeg15845https://bibliotecadigital.udea.edu.co/bitstreams/d257fbcf-b67a-4116-ae61-0bfab5a1a86f/downloadd624d38a40bf4643af1c253dd4268c35MD55falseAnonymousREAD10495/37297oai:bibliotecadigital.udea.edu.co:10495/372972025-03-26 20:38:05.121https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
