Prevalence of Metabolic Syndrome and Its Association with Sociodemographic Characteristics in Participants of a Public Chronic Disease Control Program in Medellin, Colombia, in 2018

ABSTRACT : Background: Metabolic syndrome has increased to epidemic levels in low- and middleincome countries. The knowledge on metabolic syndrome and its related diseases constitutes a clinical, epidemiological, and economic challenge of great relevance. The frequency of metabolic syndrome may vary...

Full description

Autores:
Higuita Gutiérrez, Luis Felipe
Martínez Quiroz, Wilson de Jesús
Cardona Arias, Jaiberth Antonio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/31105
Acceso en línea:
https://hdl.handle.net/10495/31105
Palabra clave:
Síndrome Metabólico
Metabolic Syndrome
Factores de Riesgo
Risk Factors
Prevalencia
Prevalence
Colombia
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/2.5/co/
id UDEA2_5588587acd2e61c19cd888ac664e0181
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/31105
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Prevalence of Metabolic Syndrome and Its Association with Sociodemographic Characteristics in Participants of a Public Chronic Disease Control Program in Medellin, Colombia, in 2018
title Prevalence of Metabolic Syndrome and Its Association with Sociodemographic Characteristics in Participants of a Public Chronic Disease Control Program in Medellin, Colombia, in 2018
spellingShingle Prevalence of Metabolic Syndrome and Its Association with Sociodemographic Characteristics in Participants of a Public Chronic Disease Control Program in Medellin, Colombia, in 2018
Síndrome Metabólico
Metabolic Syndrome
Factores de Riesgo
Risk Factors
Prevalencia
Prevalence
Colombia
title_short Prevalence of Metabolic Syndrome and Its Association with Sociodemographic Characteristics in Participants of a Public Chronic Disease Control Program in Medellin, Colombia, in 2018
title_full Prevalence of Metabolic Syndrome and Its Association with Sociodemographic Characteristics in Participants of a Public Chronic Disease Control Program in Medellin, Colombia, in 2018
title_fullStr Prevalence of Metabolic Syndrome and Its Association with Sociodemographic Characteristics in Participants of a Public Chronic Disease Control Program in Medellin, Colombia, in 2018
title_full_unstemmed Prevalence of Metabolic Syndrome and Its Association with Sociodemographic Characteristics in Participants of a Public Chronic Disease Control Program in Medellin, Colombia, in 2018
title_sort Prevalence of Metabolic Syndrome and Its Association with Sociodemographic Characteristics in Participants of a Public Chronic Disease Control Program in Medellin, Colombia, in 2018
dc.creator.fl_str_mv Higuita Gutiérrez, Luis Felipe
Martínez Quiroz, Wilson de Jesús
Cardona Arias, Jaiberth Antonio
dc.contributor.author.none.fl_str_mv Higuita Gutiérrez, Luis Felipe
Martínez Quiroz, Wilson de Jesús
Cardona Arias, Jaiberth Antonio
dc.contributor.researchgroup.spa.fl_str_mv Salud y Sostenibilidad
dc.subject.decs.none.fl_str_mv Síndrome Metabólico
Metabolic Syndrome
Factores de Riesgo
Risk Factors
Prevalencia
Prevalence
Colombia
topic Síndrome Metabólico
Metabolic Syndrome
Factores de Riesgo
Risk Factors
Prevalencia
Prevalence
Colombia
description ABSTRACT : Background: Metabolic syndrome has increased to epidemic levels in low- and middleincome countries. The knowledge on metabolic syndrome and its related diseases constitutes a clinical, epidemiological, and economic challenge of great relevance. The frequency of metabolic syndrome may vary between populations depending on age, sex, lifestyle, and culture; however, in Colombia, there is only little research, and the available studies focus on small populations that do not allow estimating their prevalence and distribution in different sociodemographic groups. We aimed to estimate the prevalence of metabolic syndrome and its association with sociodemographic characteristics in participants attending public chronic disease control programs in Medellin, Colombia, in the year 2018. Methods: We conducted a cross-sectional study in all patients who participated in a public chronic disease control program. Involved in this study were 68,288 individuals who attended at 10 hospital units and were strategically distributed in the city. The diagnostic criteria of the metabolic syndrome and its components were based on the consensus of the Latin American Diabetes Association. The data on age, sex, blood pressure, weight, height, physical activity, medications, lipid profile, and glycemic and glycosylated hemoglobin levels were obtained for clinical records. The prevalence, Pearson’s chi-square test, prevalence ratios (Kato-Katz method), and odds ratios (Woolf method) were estimated with 95% confidence intervals. A multivariate adjustment model was used with a logistic regression model to identify potential confounders using Epidat 4.2 and SPSS® 25.0. Results: The prevalence of the syndrome was 35.4%, with abdominal obesity in 82.3% individuals, hypertension in 48.6%, glucose intolerance in 25.5%, and hypertriglyceridemia in 22%. The prevalence of the syndrome exhibited statistical differences according to the area of residence. It was 15% higher in women; 31% and 59% higher in young and older adults, respectively, than in individuals aged <25 years; 11% and 13% higher in the illiterate population and population with primary studies than in individuals with higher education; and approximately 200 times higher than those who are sedentary. Conclusion: A high prevalence of the syndrome and its constitutive factors in the study population demonstrated the importance of controlling it and increasing community-based prevention strategies, prioritizing the identified groups that are at the highest risk.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2022-10-06T19:01:32Z
dc.date.available.none.fl_str_mv 2022-10-06T19:01:32Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/31105
dc.identifier.doi.none.fl_str_mv 10.2147/DMSO.S242826
dc.identifier.eissn.none.fl_str_mv 1178-7007
url https://hdl.handle.net/10495/31105
identifier_str_mv 10.2147/DMSO.S242826
1178-7007
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Diabetes Metab Syndr Obes.
dc.relation.citationendpage.spa.fl_str_mv 1169
dc.relation.citationstartpage.spa.fl_str_mv 1161
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.ispartofjournal.spa.fl_str_mv Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/2.5/co/
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Dove Press
dc.publisher.place.spa.fl_str_mv Auckland, Nueva Zelanda
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/99d9033b-ee9e-4096-a9c9-8b0d76e901a7/download
https://bibliotecadigital.udea.edu.co/bitstreams/07ee26cc-fb95-43ab-af69-c6c478b33ad0/download
https://bibliotecadigital.udea.edu.co/bitstreams/1691be31-171a-4379-b713-257329355278/download
https://bibliotecadigital.udea.edu.co/bitstreams/3b766aac-be99-4eeb-bd5a-3e8cbec8ad31/download
https://bibliotecadigital.udea.edu.co/bitstreams/e139df4f-1f05-4f9f-8220-be7afd25bec6/download
bitstream.checksum.fl_str_mv 19f581e8a8f6827caf4f7da21783cc03
c0c92b0ffc8b7d22d9cf56754a416a76
8a4605be74aa9ea9d79846c1fba20a33
ecad1755937b4bb99ed3b2552de08f9c
20d45b2d7a9988fa9e2221492a6cd5d4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052555324358656
spelling Higuita Gutiérrez, Luis FelipeMartínez Quiroz, Wilson de JesúsCardona Arias, Jaiberth AntonioSalud y Sostenibilidad2022-10-06T19:01:32Z2022-10-06T19:01:32Z2020https://hdl.handle.net/10495/3110510.2147/DMSO.S2428261178-7007ABSTRACT : Background: Metabolic syndrome has increased to epidemic levels in low- and middleincome countries. The knowledge on metabolic syndrome and its related diseases constitutes a clinical, epidemiological, and economic challenge of great relevance. The frequency of metabolic syndrome may vary between populations depending on age, sex, lifestyle, and culture; however, in Colombia, there is only little research, and the available studies focus on small populations that do not allow estimating their prevalence and distribution in different sociodemographic groups. We aimed to estimate the prevalence of metabolic syndrome and its association with sociodemographic characteristics in participants attending public chronic disease control programs in Medellin, Colombia, in the year 2018. Methods: We conducted a cross-sectional study in all patients who participated in a public chronic disease control program. Involved in this study were 68,288 individuals who attended at 10 hospital units and were strategically distributed in the city. The diagnostic criteria of the metabolic syndrome and its components were based on the consensus of the Latin American Diabetes Association. The data on age, sex, blood pressure, weight, height, physical activity, medications, lipid profile, and glycemic and glycosylated hemoglobin levels were obtained for clinical records. The prevalence, Pearson’s chi-square test, prevalence ratios (Kato-Katz method), and odds ratios (Woolf method) were estimated with 95% confidence intervals. A multivariate adjustment model was used with a logistic regression model to identify potential confounders using Epidat 4.2 and SPSS® 25.0. Results: The prevalence of the syndrome was 35.4%, with abdominal obesity in 82.3% individuals, hypertension in 48.6%, glucose intolerance in 25.5%, and hypertriglyceridemia in 22%. The prevalence of the syndrome exhibited statistical differences according to the area of residence. It was 15% higher in women; 31% and 59% higher in young and older adults, respectively, than in individuals aged <25 years; 11% and 13% higher in the illiterate population and population with primary studies than in individuals with higher education; and approximately 200 times higher than those who are sedentary. Conclusion: A high prevalence of the syndrome and its constitutive factors in the study population demonstrated the importance of controlling it and increasing community-based prevention strategies, prioritizing the identified groups that are at the highest risk.COL00888819application/pdfengDove PressAuckland, Nueva Zelandahttp://creativecommons.org/licenses/by-nc/2.5/co/https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Prevalence of Metabolic Syndrome and Its Association with Sociodemographic Characteristics in Participants of a Public Chronic Disease Control Program in Medellin, Colombia, in 2018Artículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionSíndrome MetabólicoMetabolic SyndromeFactores de RiesgoRisk FactorsPrevalenciaPrevalenceColombiaDiabetes Metab Syndr Obes.1169116113Diabetes, Metabolic Syndrome and Obesity: Targets and TherapyPublicationORIGINALHiguitaLuisFelipe_2020_PrevalenceMetabolicSyndrome.pdfHiguitaLuisFelipe_2020_PrevalenceMetabolicSyndrome.pdfArtículo de investigaciónapplication/pdf1466769https://bibliotecadigital.udea.edu.co/bitstreams/99d9033b-ee9e-4096-a9c9-8b0d76e901a7/download19f581e8a8f6827caf4f7da21783cc03MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8933https://bibliotecadigital.udea.edu.co/bitstreams/07ee26cc-fb95-43ab-af69-c6c478b33ad0/downloadc0c92b0ffc8b7d22d9cf56754a416a76MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/1691be31-171a-4379-b713-257329355278/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTHiguitaLuisFelipe_2020_PrevalenceMetabolicSyndrome.pdf.txtHiguitaLuisFelipe_2020_PrevalenceMetabolicSyndrome.pdf.txtExtracted texttext/plain44126https://bibliotecadigital.udea.edu.co/bitstreams/3b766aac-be99-4eeb-bd5a-3e8cbec8ad31/downloadecad1755937b4bb99ed3b2552de08f9cMD54falseAnonymousREADTHUMBNAILHiguitaLuisFelipe_2020_PrevalenceMetabolicSyndrome.pdf.jpgHiguitaLuisFelipe_2020_PrevalenceMetabolicSyndrome.pdf.jpgGenerated Thumbnailimage/jpeg16361https://bibliotecadigital.udea.edu.co/bitstreams/e139df4f-1f05-4f9f-8220-be7afd25bec6/download20d45b2d7a9988fa9e2221492a6cd5d4MD55falseAnonymousREAD10495/31105oai:bibliotecadigital.udea.edu.co:10495/311052025-03-27 00:15:07.018http://creativecommons.org/licenses/by-nc/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=