Integration and Validation of Onboard Systems in a VTOL UAV Through Experimental Testing and SIL Simulations

This degree work integrates and validates the onboard systems of a quadplane-type VTOL UAS (LIBIS), a project of Universidad Politécnica de Madrid, advancing the concept into a modular, verifiable architecture prior to outdoor testing. The objective was to define the onboard systems, build verificat...

Full description

Autores:
Rodríguez Botero, José David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/48320
Acceso en línea:
https://hdl.handle.net/10495/48320
Palabra clave:
Vertically rising aircraft
Aeronaves de ascenso vertical
Drone aircraft - Control systems
Aeronaves no tripuladas - Sistemas de control
Systems integration
Integración de sistemas
Propulsion systems
Sistemas de propulsión
Digital computer simulation
Simulación por computadores digitales
Flight control
Control de vuelo
Autopilot
Piloto automático
http://id.loc.gov/authorities/subjects/sh85142914
http://id.loc.gov/authorities/subjects/sh2002000348
http://id.loc.gov/authorities/subjects/sh2003005431
http://id.loc.gov/authorities/subjects/sh2003010905
http://id.loc.gov/authorities/subjects/sh85037973
http://id.loc.gov/authorities/subjects/sh85049111
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:This degree work integrates and validates the onboard systems of a quadplane-type VTOL UAS (LIBIS), a project of Universidad Politécnica de Madrid, advancing the concept into a modular, verifiable architecture prior to outdoor testing. The objective was to define the onboard systems, build verification tools, and assess performance via propulsion bench testing and Software-in-the-Loop (SIL) simulations. An iterative methodology was adopted: selection of mature COTS avionics (Pixhawk v2.4.8, u-blox Neo-M8N GNSS, MS4525DO digital Pitot, SiK telemetry, HV servos), subsystem-level integration with full traceability (.BIN/.tlog), design and construction of a propulsion test bench (thrust, torque, RPM, voltage, current), preliminary energy sizing closure (7S4P LiPo, 300-A BMS, copper busbars), two functional prototypes, and an ArduPilot–RealFlight SIL environment executing autonomous missions and a test battery (battery failsafe, VTOL↔FW transitions, stabilization times, GNSS/failsafe, low-speed response). Bench tests yielded PWM–RPM–thrust curves and a reference operating point of ≈650 W per propulsion motor (≈1800 μs, ≈4900 rpm, ≈26 A, ≈27 N); with usable 7S4P energy (≈414–440 Wh), estimated cruise endurance was 35–39 min at 23.11 m/s (≈49–54 km). SIL validated LOW/CRITICAL→RTL/QLAND sequences and vertical assist under low airspeed, while indicating fine-tuning needs for the FW→VTOL transition. The approach demonstrably reduces technical risk, consolidates the power/control architecture, and defines next steps: full pack+BMS integration, dynamic/wind-tunnel and HIL campaigns, control tuning, EMI/thermal management, and SORA preparation for outdoor operations.