Cycloaddition of limonene epoxide and CO2 over Zn/SBA-15 catalysts for limonene carbonate synthesis
The cycloaddition reaction of CO2 with epoxides such as limonene epoxide (LE) to form cyclic carbonates is considered a promising alternative for reducing CO2 emissions. In this work, CO2 fixation on LE to produce cyclic carbonates was carried out over Zn/SBA-15 with tetrabutylammonium bromide (TBAB...
- Autores:
-
Villa Holgín, Aída Luz
Mosquera Bonilla, Yiceth Carina
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/46673
- Acceso en línea:
- https://hdl.handle.net/10495/46673
- Palabra clave:
- Carbonatos
Carbonates
Dióxido Carbono
Carbon dioxide
Catalizadores
Catalysts
Limoneno
Limonene
http://aims.fao.org/aos/agrovoc/c_28446
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
| Summary: | The cycloaddition reaction of CO2 with epoxides such as limonene epoxide (LE) to form cyclic carbonates is considered a promising alternative for reducing CO2 emissions. In this work, CO2 fixation on LE to produce cyclic carbonates was carried out over Zn/SBA-15 with tetrabutylammonium bromide (TBAB) as co-catalyst and over NH3X-Zn/SBA-15 (X= Cl, Br, or I) catalysts. The catalysts were characterized by FT-IR, XRD, N2 adsorption–desorption isotherms, TEM, NH3-TPD, XPS, TGA and Py-FTIR. The Zn/SBA-15 support mainly presents Lewis’s acid sites of medium acidity; the surface area was 512 m2 /g and 378 m2 /g and the pore size were 9 nm and 7.2 nm, for Zn/SBA-15 and NH3Cl-Zn/SBA-15, respectively. The functionalization of Zn/SBA-15 was verified by FTIR, UV-vis, and XPS analysis. It was found that when Zn/SBA-15 was used as catalyst that reaction time had a significative effect on LE conversion and in the case of limonene carbonate selectivity, co-catalyst concentration variation had the main effect. Zn/SBA-15 catalyst can be reused up to 5 times without significant changes neither in conversion nor in limonene carbonate selectivity. The best LE conversion and limonene carbonate selectivity was 33% and 93%, respectively (1 M LE, 200 mg Zn/SBA-15, 7% TBAB; 30 bar, 18 h, 700 rpm and 20 mL diethyl carbonate). The reported catalytic system is a promising system for obtaining limonene carbonate using a heterogeneous catalyst. |
|---|
