Left invariant special Kähler structures

We construct left invariant special Kähler structures on the cotangent bundle of a flat pseudo-Riemannian Lie group. We introduce the twisted cartesian product of two special Kähler Lie algebras according to two linear representations by infinitesimal Kähler transformations. We also exhibit a double...

Full description

Autores:
Valencia Quintero, Fabricio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46171
Acceso en línea:
https://hdl.handle.net/10495/46171
Palabra clave:
Álgebras de Lie
Lie algebras
Álgebras lineales
Algebras, linear
Estructuras especiales de Kähler
Propiedad Hessiana
Twisted cartesian products
Special Kähler structures
Hessian property
Productos cartesianos torcidos
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:We construct left invariant special Kähler structures on the cotangent bundle of a flat pseudo-Riemannian Lie group. We introduce the twisted cartesian product of two special Kähler Lie algebras according to two linear representations by infinitesimal Kähler transformations. We also exhibit a double extension process of a special Kähler Lie algebra which allows us to get all simply connected special Kähler Lie groups with bi-invariant symplectic connections. All Lie groups constructed by performing this double extension process can be identified with a subgroup of symplectic (or Kähler) affine transformations of its Lie algebra containing a nontrivial 1-parameter subgroup formed by central translations. We show a characterization of left invariant flat special Kähler structures using étale Kähler affine representations, exhibit some immediate consequences of the constructions mentioned above, and give several non-trivial examples.