Properties of the bivariate confluent hypergeometric function kind 1 distribution

ABSTRACT: The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1ν1 − 1 x2ν2 − 11F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1...

Full description

Autores:
Nagar, Daya Krishna
Sepulveda Murillo, Fabio Humberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2011
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30378
Acceso en línea:
https://hdl.handle.net/10495/30378
Palabra clave:
Distribución hipergeométrica
Hypergeometric distribution
Funciones hipergeométricas
Functions, hypergeometric
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_516632748e944754cb95175c679bcb4c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30378
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Properties of the bivariate confluent hypergeometric function kind 1 distribution
title Properties of the bivariate confluent hypergeometric function kind 1 distribution
spellingShingle Properties of the bivariate confluent hypergeometric function kind 1 distribution
Distribución hipergeométrica
Hypergeometric distribution
Funciones hipergeométricas
Functions, hypergeometric
title_short Properties of the bivariate confluent hypergeometric function kind 1 distribution
title_full Properties of the bivariate confluent hypergeometric function kind 1 distribution
title_fullStr Properties of the bivariate confluent hypergeometric function kind 1 distribution
title_full_unstemmed Properties of the bivariate confluent hypergeometric function kind 1 distribution
title_sort Properties of the bivariate confluent hypergeometric function kind 1 distribution
dc.creator.fl_str_mv Nagar, Daya Krishna
Sepulveda Murillo, Fabio Humberto
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Sepulveda Murillo, Fabio Humberto
dc.contributor.researchgroup.spa.fl_str_mv Análisis Multivariado
dc.subject.lemb.none.fl_str_mv Distribución hipergeométrica
Hypergeometric distribution
Funciones hipergeométricas
Functions, hypergeometric
topic Distribución hipergeométrica
Hypergeometric distribution
Funciones hipergeométricas
Functions, hypergeometric
description ABSTRACT: The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1ν1 − 1 x2ν2 − 11F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √(X1 X2). The density function of 2 √(X1 X2) is represented in terms of modified Bessel function of the second kind. We also show that for ν1 − ν2 = 1/2, 2 √(X1 X2) follows a confluent hypergeometric function kind 1 distribution.
publishDate 2011
dc.date.issued.none.fl_str_mv 2011
dc.date.accessioned.none.fl_str_mv 2022-09-02T17:24:10Z
dc.date.available.none.fl_str_mv 2022-09-02T17:24:10Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0041-6932
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30378
dc.identifier.eissn.none.fl_str_mv 1669-9637
identifier_str_mv 0041-6932
1669-9637
url https://hdl.handle.net/10495/30378
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Unión Mat. Argent.
dc.relation.citationendpage.spa.fl_str_mv 21
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 11
dc.relation.citationvolume.spa.fl_str_mv 52
dc.relation.ispartofjournal.spa.fl_str_mv Revista de la Unión Matemática Argentina
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Unión Matemática Argentina
dc.publisher.place.spa.fl_str_mv Bahía Blanca, Argentina
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/1a67f7d9-6c44-45d8-8b2b-babcff825015/download
https://bibliotecadigital.udea.edu.co/bitstreams/832dc4d2-719f-4b5c-baab-e252f8544ca2/download
https://bibliotecadigital.udea.edu.co/bitstreams/5062853e-0737-4a3d-bffd-d1ffe5d62d41/download
https://bibliotecadigital.udea.edu.co/bitstreams/1caa4551-9795-4e86-bf3b-c48cb5a8f3d4/download
https://bibliotecadigital.udea.edu.co/bitstreams/f87f9f0c-e9c4-44bd-8ef2-4262075886b8/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
c5639d0c9fd88550a946708134f78dbb
1646d1f6b96dbbbc38035efc9239ac9c
2c51f4e0c724822b492718163030f4e4
b5f002c6cada7e39cd07ffc74fbeef30
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052442913865728
spelling Nagar, Daya KrishnaSepulveda Murillo, Fabio HumbertoAnálisis Multivariado2022-09-02T17:24:10Z2022-09-02T17:24:10Z20110041-6932https://hdl.handle.net/10495/303781669-9637ABSTRACT: The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1ν1 − 1 x2ν2 − 11F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √(X1 X2). The density function of 2 √(X1 X2) is represented in terms of modified Bessel function of the second kind. We also show that for ν1 − ν2 = 1/2, 2 √(X1 X2) follows a confluent hypergeometric function kind 1 distribution.COL000053211application/pdfengUnión Matemática ArgentinaBahía Blanca, Argentinahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Properties of the bivariate confluent hypergeometric function kind 1 distributionArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionDistribución hipergeométricaHypergeometric distributionFunciones hipergeométricasFunctions, hypergeometricRev. Unión Mat. Argent.2111152Revista de la Unión Matemática ArgentinaPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/1a67f7d9-6c44-45d8-8b2b-babcff825015/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALNagarDaya_2011_PropertiesBivariateConfluent .pdfNagarDaya_2011_PropertiesBivariateConfluent .pdfArtículo de investigaciónapplication/pdf164139https://bibliotecadigital.udea.edu.co/bitstreams/832dc4d2-719f-4b5c-baab-e252f8544ca2/downloadc5639d0c9fd88550a946708134f78dbbMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/5062853e-0737-4a3d-bffd-d1ffe5d62d41/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADTEXTNagarDaya_2011_PropertiesBivariateConfluent .pdf.txtNagarDaya_2011_PropertiesBivariateConfluent .pdf.txtExtracted texttext/plain23963https://bibliotecadigital.udea.edu.co/bitstreams/1caa4551-9795-4e86-bf3b-c48cb5a8f3d4/download2c51f4e0c724822b492718163030f4e4MD54falseAnonymousREADTHUMBNAILNagarDaya_2011_PropertiesBivariateConfluent .pdf.jpgNagarDaya_2011_PropertiesBivariateConfluent .pdf.jpgGenerated Thumbnailimage/jpeg9424https://bibliotecadigital.udea.edu.co/bitstreams/f87f9f0c-e9c4-44bd-8ef2-4262075886b8/downloadb5f002c6cada7e39cd07ffc74fbeef30MD55falseAnonymousREAD10495/30378oai:bibliotecadigital.udea.edu.co:10495/303782025-03-26 22:26:18.329http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=