Assessment of the flowering genetic regulatory network in tropical orchids with different lifeforms

ABSTRACT: The reproductive transition in angiosperms includes morphological changes when a vegetative shoot apical meristem (VM) forming leaves, becomes an inflorescence meristem (IM) that forms bracts and flowers. This process is controlled in monocots, like Oryza sativa, by a Genetic Regulatory Ne...

Full description

Autores:
Mafrigal Bedoya, Yesenia
Pabón Mora, Natalia
Scanlon, Michael
Bemer, Marian
Alzate Restrepo, Juan Fernando
Tipo de recurso:
http://purl.org/coar/resource_type/c_5794
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/36147
Acceso en línea:
https://hdl.handle.net/10495/36147
Palabra clave:
Orchidaceae
RNA-Seq
Orquídeas
Orchids
Floración
Flowering
Evo Devo
http://aims.fao.org/aos/agrovoc/c_2992
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_50f2be578ca5693b1c31ecfb573bc6c5
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/36147
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Assessment of the flowering genetic regulatory network in tropical orchids with different lifeforms
title Assessment of the flowering genetic regulatory network in tropical orchids with different lifeforms
spellingShingle Assessment of the flowering genetic regulatory network in tropical orchids with different lifeforms
Orchidaceae
RNA-Seq
Orquídeas
Orchids
Floración
Flowering
Evo Devo
http://aims.fao.org/aos/agrovoc/c_2992
title_short Assessment of the flowering genetic regulatory network in tropical orchids with different lifeforms
title_full Assessment of the flowering genetic regulatory network in tropical orchids with different lifeforms
title_fullStr Assessment of the flowering genetic regulatory network in tropical orchids with different lifeforms
title_full_unstemmed Assessment of the flowering genetic regulatory network in tropical orchids with different lifeforms
title_sort Assessment of the flowering genetic regulatory network in tropical orchids with different lifeforms
dc.creator.fl_str_mv Mafrigal Bedoya, Yesenia
Pabón Mora, Natalia
Scanlon, Michael
Bemer, Marian
Alzate Restrepo, Juan Fernando
dc.contributor.author.none.fl_str_mv Mafrigal Bedoya, Yesenia
Pabón Mora, Natalia
Scanlon, Michael
Bemer, Marian
Alzate Restrepo, Juan Fernando
dc.contributor.conferencename.spa.fl_str_mv Botany 2023 (Boise, Idaho, Estados Unidos : 25 de julio de 2023)
dc.contributor.researchgroup.spa.fl_str_mv Evo-Devo en Plantas
dc.subject.decs.none.fl_str_mv Orchidaceae
RNA-Seq
topic Orchidaceae
RNA-Seq
Orquídeas
Orchids
Floración
Flowering
Evo Devo
http://aims.fao.org/aos/agrovoc/c_2992
dc.subject.lemb.none.fl_str_mv Orquídeas
Orchids
dc.subject.agrovoc.none.fl_str_mv Floración
Flowering
dc.subject.proposal.spa.fl_str_mv Evo Devo
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_2992
description ABSTRACT: The reproductive transition in angiosperms includes morphological changes when a vegetative shoot apical meristem (VM) forming leaves, becomes an inflorescence meristem (IM) that forms bracts and flowers. This process is controlled in monocots, like Oryza sativa, by a Genetic Regulatory Network (GRN) that includes promoters like Heading date 3a (Hd3a) (FLOWERING LOCUS T-FT), Heading date 1 (Hd1) (CONSTANS-CO), FLOWERING LOCUS D (OsFD1) and 14–3–3 proteins that activate floral meristem identity genes. Repressors involved in the maintenance of the vegetative phases include TERMINAL FLOWER LOCUS 1 (TFL1) and OsMADS55 (AGAMOUS Like24/SHORT VEGETATIVE PHASE). Additionally, FLOWERING LOCUS C (FLC) and VERNALIZATION 2 (VRN2) are important in Poales species that respond to cold. Although flowering mechanisms have been studied in detail in monocot model species, little is known about how the same process occurs in orchids with different habits colonizing different niches. Terrestrial and epiphytic orchids vary in meristem hierarchies and the development of storage organs. We performed a comprehensive analysis of the morpho-anatomical changes from VM to IM in the terrestrial orchid Epidendrum fimbriatum with nearly continuous flowering all year long in cloud Andean forests. Using the landmarks for reproductive transition we performed comparative transcriptomic analyses in VM versus IM. We used a differential expression gene approach between those stages, and we found 40 DEGs between VM and IM involved in reproductive transition. Furthermore, we used a targeted search to isolate more than 30 orthologs from the canonical flowering GRN in parallel to the DEGs. In addition, we corroborated the results from our RNAseq data with spatio-temporal expression analyses using in situ hybridization and by protein-protein interaction studies using yeast two hybrid experiments. We are currently comparing these results with experiments performed in orchids with seasonal flowering, including Cattleya trianae, an orchid with storage organs and epiphytic habit, and Elleanthus aurantiacus with terrestrial habit and lacking storage organs. Our results allow us to re-evaluate the flowering GRN in orchids when compared to the model species O. sativa and other Poaceae. In general, we have found evidence for: 1) high duplication rates for flowering integrators in orchids but a low percentage of homologs transcriptionally active; 2) the retention of canonical flowering integrators, at the expense of low expression, the loss of key protein interactions and possibly pseudogenization of some homologs; and 3) changes in the transcriptomic profiles in different orchids according to their habits.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-04T13:47:30Z
dc.date.available.none.fl_str_mv 2023-08-04T13:47:30Z
dc.date.issued.none.fl_str_mv 2023-07-25
dc.type.spa.fl_str_mv Documento de conferencia
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_5794
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/EC
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_5794
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/36147
url https://hdl.handle.net/10495/36147
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.conferencedate.spa.fl_str_mv 2023-07-22/2023-07-26
dc.relation.conferenceplace.spa.fl_str_mv Boise, Idaho, Estados Unidos
dc.relation.ispartofjournal.spa.fl_str_mv Botany 2023
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.accessrights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
Atribución-NoComercial-CompartirIgual 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/a24414d7-45a9-4495-8b6a-c40de8408a17/download
https://bibliotecadigital.udea.edu.co/bitstreams/62b6b9f5-8b44-47cb-9548-b46778195382/download
https://bibliotecadigital.udea.edu.co/bitstreams/c3eb84d4-1a27-4e2e-baf8-fd4afdf4ce26/download
https://bibliotecadigital.udea.edu.co/bitstreams/595d7f84-b6d5-497a-9b4c-8a179518953e/download
https://bibliotecadigital.udea.edu.co/bitstreams/e9a9ef4a-14d0-4f18-868d-8f9a4cf9f8d4/download
bitstream.checksum.fl_str_mv b1fb4410f6075e38aa150494c027fe82
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
6543d2ffa51640ea6dd09f232644aea9
7a9ff2d654ab5d77acc4de4ea07f6adc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052372164345856
spelling Mafrigal Bedoya, YeseniaPabón Mora, NataliaScanlon, MichaelBemer, MarianAlzate Restrepo, Juan FernandoBotany 2023 (Boise, Idaho, Estados Unidos : 25 de julio de 2023)Evo-Devo en Plantas2023-08-04T13:47:30Z2023-08-04T13:47:30Z2023-07-25https://hdl.handle.net/10495/36147ABSTRACT: The reproductive transition in angiosperms includes morphological changes when a vegetative shoot apical meristem (VM) forming leaves, becomes an inflorescence meristem (IM) that forms bracts and flowers. This process is controlled in monocots, like Oryza sativa, by a Genetic Regulatory Network (GRN) that includes promoters like Heading date 3a (Hd3a) (FLOWERING LOCUS T-FT), Heading date 1 (Hd1) (CONSTANS-CO), FLOWERING LOCUS D (OsFD1) and 14–3–3 proteins that activate floral meristem identity genes. Repressors involved in the maintenance of the vegetative phases include TERMINAL FLOWER LOCUS 1 (TFL1) and OsMADS55 (AGAMOUS Like24/SHORT VEGETATIVE PHASE). Additionally, FLOWERING LOCUS C (FLC) and VERNALIZATION 2 (VRN2) are important in Poales species that respond to cold. Although flowering mechanisms have been studied in detail in monocot model species, little is known about how the same process occurs in orchids with different habits colonizing different niches. Terrestrial and epiphytic orchids vary in meristem hierarchies and the development of storage organs. We performed a comprehensive analysis of the morpho-anatomical changes from VM to IM in the terrestrial orchid Epidendrum fimbriatum with nearly continuous flowering all year long in cloud Andean forests. Using the landmarks for reproductive transition we performed comparative transcriptomic analyses in VM versus IM. We used a differential expression gene approach between those stages, and we found 40 DEGs between VM and IM involved in reproductive transition. Furthermore, we used a targeted search to isolate more than 30 orthologs from the canonical flowering GRN in parallel to the DEGs. In addition, we corroborated the results from our RNAseq data with spatio-temporal expression analyses using in situ hybridization and by protein-protein interaction studies using yeast two hybrid experiments. We are currently comparing these results with experiments performed in orchids with seasonal flowering, including Cattleya trianae, an orchid with storage organs and epiphytic habit, and Elleanthus aurantiacus with terrestrial habit and lacking storage organs. Our results allow us to re-evaluate the flowering GRN in orchids when compared to the model species O. sativa and other Poaceae. In general, we have found evidence for: 1) high duplication rates for flowering integrators in orchids but a low percentage of homologs transcriptionally active; 2) the retention of canonical flowering integrators, at the expense of low expression, the loss of key protein interactions and possibly pseudogenization of some homologs; and 3) changes in the transcriptomic profiles in different orchids according to their habits.COL0170292application/pdfenghttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-sa/2.5/co/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Assessment of the flowering genetic regulatory network in tropical orchids with different lifeformsDocumento de conferenciahttp://purl.org/coar/resource_type/c_5794http://purl.org/coar/resource_type/c_c94fhttps://purl.org/redcol/resource_type/EChttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionOrchidaceaeRNA-SeqOrquídeasOrchidsFloraciónFloweringEvo Devohttp://aims.fao.org/aos/agrovoc/c_29922023-07-22/2023-07-26Boise, Idaho, Estados UnidosBotany 2023PublicationORIGINALMadrigalYesenia_2023_flowering_Genetic_Regulatory_Orchids.pdfMadrigalYesenia_2023_flowering_Genetic_Regulatory_Orchids.pdfDocumento de conferenciaapplication/pdf77503https://bibliotecadigital.udea.edu.co/bitstreams/a24414d7-45a9-4495-8b6a-c40de8408a17/downloadb1fb4410f6075e38aa150494c027fe82MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/62b6b9f5-8b44-47cb-9548-b46778195382/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/c3eb84d4-1a27-4e2e-baf8-fd4afdf4ce26/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMadrigalYesenia_2023_flowering_Genetic_Regulatory_Orchids.pdf.txtMadrigalYesenia_2023_flowering_Genetic_Regulatory_Orchids.pdf.txtExtracted texttext/plain3877https://bibliotecadigital.udea.edu.co/bitstreams/595d7f84-b6d5-497a-9b4c-8a179518953e/download6543d2ffa51640ea6dd09f232644aea9MD54falseAnonymousREADTHUMBNAILMadrigalYesenia_2023_flowering_Genetic_Regulatory_Orchids.pdf.jpgMadrigalYesenia_2023_flowering_Genetic_Regulatory_Orchids.pdf.jpgGenerated Thumbnailimage/jpeg15707https://bibliotecadigital.udea.edu.co/bitstreams/e9a9ef4a-14d0-4f18-868d-8f9a4cf9f8d4/download7a9ff2d654ab5d77acc4de4ea07f6adcMD55falseAnonymousREAD10495/36147oai:bibliotecadigital.udea.edu.co:10495/361472025-03-26 21:16:24.643https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=