Bivariate Extended Confluent Hypergeometric Function Distribution
ABSTRACT: In this article, we define a bivariate extended confluent hypergeometric function density in terms of extended confluent hypergeometric function. We also derive several of its properties and results in terms of extended beta, extended confluent hypergeometric, and modified Bessel functions...
- Autores:
-
Nagar, Daya Krishna
Morán Vásquez, Raúl Alejandro
Roldán Correa, Alejandro
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2013
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/26754
- Acceso en línea:
- http://hdl.handle.net/10495/26754
- Palabra clave:
- Beta distribution
Bivariate distribution
Extended beta function
Extended confluent hypergeometric function
Quotient
Gauss hypergeometric function
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_50cd306e04fc0a742131ca96173387dc |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/26754 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Bivariate Extended Confluent Hypergeometric Function Distribution |
| title |
Bivariate Extended Confluent Hypergeometric Function Distribution |
| spellingShingle |
Bivariate Extended Confluent Hypergeometric Function Distribution Beta distribution Bivariate distribution Extended beta function Extended confluent hypergeometric function Quotient Gauss hypergeometric function |
| title_short |
Bivariate Extended Confluent Hypergeometric Function Distribution |
| title_full |
Bivariate Extended Confluent Hypergeometric Function Distribution |
| title_fullStr |
Bivariate Extended Confluent Hypergeometric Function Distribution |
| title_full_unstemmed |
Bivariate Extended Confluent Hypergeometric Function Distribution |
| title_sort |
Bivariate Extended Confluent Hypergeometric Function Distribution |
| dc.creator.fl_str_mv |
Nagar, Daya Krishna Morán Vásquez, Raúl Alejandro Roldán Correa, Alejandro |
| dc.contributor.author.none.fl_str_mv |
Nagar, Daya Krishna Morán Vásquez, Raúl Alejandro Roldán Correa, Alejandro |
| dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Multivariado |
| dc.subject.proposal.spa.fl_str_mv |
Beta distribution Bivariate distribution Extended beta function Extended confluent hypergeometric function Quotient Gauss hypergeometric function |
| topic |
Beta distribution Bivariate distribution Extended beta function Extended confluent hypergeometric function Quotient Gauss hypergeometric function |
| description |
ABSTRACT: In this article, we define a bivariate extended confluent hypergeometric function density in terms of extended confluent hypergeometric function. We also derive several of its properties and results in terms of extended beta, extended confluent hypergeometric, and modified Bessel functions. |
| publishDate |
2013 |
| dc.date.issued.none.fl_str_mv |
2013 |
| dc.date.accessioned.none.fl_str_mv |
2022-03-20T14:36:16Z |
| dc.date.available.none.fl_str_mv |
2022-03-20T14:36:16Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Nagar, D., Morán, R., & Roldán, A. (2013) Bivariate Extended Confluent Hypergeometric Function Distribution, American Journal of Mathematical and Management Sciences, 32:2, 91-100, DOI: 10.1080/01966324.2013.830235 |
| dc.identifier.issn.none.fl_str_mv |
0196-6324 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/26754 |
| dc.identifier.doi.none.fl_str_mv |
10.1080/01966324.2013.830235 |
| dc.identifier.eissn.none.fl_str_mv |
2325-8454 |
| identifier_str_mv |
Nagar, D., Morán, R., & Roldán, A. (2013) Bivariate Extended Confluent Hypergeometric Function Distribution, American Journal of Mathematical and Management Sciences, 32:2, 91-100, DOI: 10.1080/01966324.2013.830235 0196-6324 10.1080/01966324.2013.830235 2325-8454 |
| url |
http://hdl.handle.net/10495/26754 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Am. J. Math. Manag. |
| dc.relation.citationendpage.spa.fl_str_mv |
100 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.spa.fl_str_mv |
91 |
| dc.relation.citationvolume.spa.fl_str_mv |
32 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
American Journal of Mathematical and Management Sciences |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
10 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Taylor and Francis |
| dc.publisher.place.spa.fl_str_mv |
Londres, Inglaterra |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/d2d67012-463a-4233-b8ac-1de862a6e467/download https://bibliotecadigital.udea.edu.co/bitstreams/3a34ed45-3b5b-421e-97ee-2ab21484b793/download https://bibliotecadigital.udea.edu.co/bitstreams/495b7a49-e6c2-4925-927d-f3716d977209/download https://bibliotecadigital.udea.edu.co/bitstreams/ca6febde-16ff-46df-b310-9aded656475b/download https://bibliotecadigital.udea.edu.co/bitstreams/8c141546-e3c4-4e84-9d35-7fa23edf4ca0/download |
| bitstream.checksum.fl_str_mv |
b88b088d9957e670ce3b3fbe2eedbc13 653a1ae7589285a8f62a3292c42af6ef 8a4605be74aa9ea9d79846c1fba20a33 244915cf63f0bd71f4db5a9b330d2df1 4e21d7a467f216e58b244091375027c2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052446648893440 |
| spelling |
Nagar, Daya KrishnaMorán Vásquez, Raúl AlejandroRoldán Correa, AlejandroAnálisis Multivariado2022-03-20T14:36:16Z2022-03-20T14:36:16Z2013Nagar, D., Morán, R., & Roldán, A. (2013) Bivariate Extended Confluent Hypergeometric Function Distribution, American Journal of Mathematical and Management Sciences, 32:2, 91-100, DOI: 10.1080/01966324.2013.8302350196-6324http://hdl.handle.net/10495/2675410.1080/01966324.2013.8302352325-8454ABSTRACT: In this article, we define a bivariate extended confluent hypergeometric function density in terms of extended confluent hypergeometric function. We also derive several of its properties and results in terms of extended beta, extended confluent hypergeometric, and modified Bessel functions.COL000053210application/pdfengTaylor and FrancisLondres, Inglaterrahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bivariate Extended Confluent Hypergeometric Function DistributionArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionBeta distributionBivariate distributionExtended beta functionExtended confluent hypergeometric functionQuotientGauss hypergeometric functionAm. J. Math. Manag.10029132American Journal of Mathematical and Management SciencesPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/d2d67012-463a-4233-b8ac-1de862a6e467/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADORIGINALNagarDaya_2013_BivariateHypergeometricFunction.pdfNagarDaya_2013_BivariateHypergeometricFunction.pdfArtículo de investigaciónapplication/pdf77848https://bibliotecadigital.udea.edu.co/bitstreams/3a34ed45-3b5b-421e-97ee-2ab21484b793/download653a1ae7589285a8f62a3292c42af6efMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/495b7a49-e6c2-4925-927d-f3716d977209/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTNagarDaya_2013_BivariateHypergeometricFunction.pdf.txtNagarDaya_2013_BivariateHypergeometricFunction.pdf.txtExtracted texttext/plain16867https://bibliotecadigital.udea.edu.co/bitstreams/ca6febde-16ff-46df-b310-9aded656475b/download244915cf63f0bd71f4db5a9b330d2df1MD54falseAnonymousREADTHUMBNAILNagarDaya_2013_BivariateHypergeometricFunction.pdf.jpgNagarDaya_2013_BivariateHypergeometricFunction.pdf.jpgGenerated Thumbnailimage/jpeg10054https://bibliotecadigital.udea.edu.co/bitstreams/8c141546-e3c4-4e84-9d35-7fa23edf4ca0/download4e21d7a467f216e58b244091375027c2MD55falseAnonymousREAD10495/26754oai:bibliotecadigital.udea.edu.co:10495/267542025-03-26 22:29:33.019http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
