A framework for anomaly classification in Industrial Internet of Things systems

ABSTRACT: Introducing the Industrial Internet of Things (IIoT) into traditional industrial processes has marked a new era of enhanced connectivity and productivity. By integrating advanced sensors, communication technologies, and data analysis, IIoT enables real-time monitoring, proactive maintenanc...

Full description

Autores:
Rodríguez López, Martha Lucía
Tobón Vallejo, Diana Patricia
Múnera Ramírez, Danny Alexandro
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/44146
Acceso en línea:
https://hdl.handle.net/10495/44146
Palabra clave:
Detección de anomalías (Seguridad informática)
Anomaly detection (Computer security)
Context-aware computing
Internet de las Cosas
Internet of Things
Clasificación
Classification
Tecnología de las comunicaciones
Communication technology
http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
https://id.nlm.nih.gov/mesh/D000080487
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_50b0f00af670d094c5ab5f7de87484bd
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/44146
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv A framework for anomaly classification in Industrial Internet of Things systems
title A framework for anomaly classification in Industrial Internet of Things systems
spellingShingle A framework for anomaly classification in Industrial Internet of Things systems
Detección de anomalías (Seguridad informática)
Anomaly detection (Computer security)
Context-aware computing
Internet de las Cosas
Internet of Things
Clasificación
Classification
Tecnología de las comunicaciones
Communication technology
http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
https://id.nlm.nih.gov/mesh/D000080487
title_short A framework for anomaly classification in Industrial Internet of Things systems
title_full A framework for anomaly classification in Industrial Internet of Things systems
title_fullStr A framework for anomaly classification in Industrial Internet of Things systems
title_full_unstemmed A framework for anomaly classification in Industrial Internet of Things systems
title_sort A framework for anomaly classification in Industrial Internet of Things systems
dc.creator.fl_str_mv Rodríguez López, Martha Lucía
Tobón Vallejo, Diana Patricia
Múnera Ramírez, Danny Alexandro
dc.contributor.author.none.fl_str_mv Rodríguez López, Martha Lucía
Tobón Vallejo, Diana Patricia
Múnera Ramírez, Danny Alexandro
dc.contributor.researchgroup.spa.fl_str_mv Intelligent Information Systems Lab.
Grupo de Investigación en Telecomunicaciones Aplicadas (GITA)
dc.subject.lcsh.none.fl_str_mv Detección de anomalías (Seguridad informática)
Anomaly detection (Computer security)
Context-aware computing
topic Detección de anomalías (Seguridad informática)
Anomaly detection (Computer security)
Context-aware computing
Internet de las Cosas
Internet of Things
Clasificación
Classification
Tecnología de las comunicaciones
Communication technology
http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
https://id.nlm.nih.gov/mesh/D000080487
dc.subject.decs.none.fl_str_mv Internet de las Cosas
Internet of Things
dc.subject.lemb.none.fl_str_mv Clasificación
Classification
Tecnología de las comunicaciones
Communication technology
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D000080487
description ABSTRACT: Introducing the Industrial Internet of Things (IIoT) into traditional industrial processes has marked a new era of enhanced connectivity and productivity. By integrating advanced sensors, communication technologies, and data analysis, IIoT enables real-time monitoring, proactive maintenance, and increased operational efficiency. However, this increased complexity and interconnectivity also introduce new challenges in maintaining system dependability and safety. Considering these issues, this work presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies such as failures and attacks. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a comprehensive and scalable solution adaptable to various industrial contexts. The framework comprises two main components: an anomaly detection model and an anomaly classification model. The anomaly detection model operates unsupervised, continuously monitoring system data to identify deviations from normal behavior patterns. At the same time, the anomaly classification model categorizes these anomalies based on historical data using machine learning algorithms. The proposed framework has been tested in a realistic IIoT environment, demonstrating its effectiveness and practicality. During the cross-validation process, a precision of 0.95, recall of 0.88, and F1-score equal to 0.91 were obtained. This research contributes significantly to IIoT, offering a valuable tool for improving industrial operations and laying the groundwork for future anomaly classification and system resilience advancements.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-12-17T17:02:59Z
dc.date.available.none.fl_str_mv 2024-12-17T17:02:59Z
dc.date.issued.none.fl_str_mv 2025
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2543-1536
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/44146
dc.identifier.doi.none.fl_str_mv 10.1016/j.iot.2024.101446
dc.identifier.eissn.none.fl_str_mv 2542-6605
identifier_str_mv 2543-1536
10.1016/j.iot.2024.101446
2542-6605
url https://hdl.handle.net/10495/44146
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Internet Things J.
dc.relation.citationendpage.spa.fl_str_mv 19
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 29
dc.relation.ispartofjournal.spa.fl_str_mv Internet of Things
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 19 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Ámsterdam, Países Bajos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/d0eff814-c9a7-40b4-acf3-1d48599b8899/download
https://bibliotecadigital.udea.edu.co/bitstreams/b471cbaa-e8f6-494f-9c16-eb656922f572/download
https://bibliotecadigital.udea.edu.co/bitstreams/14f4f609-f798-4637-baed-4dafaec33fb8/download
https://bibliotecadigital.udea.edu.co/bitstreams/63b80fd9-5f5a-4244-9631-5433b34f4d7a/download
bitstream.checksum.fl_str_mv fb994072c2dba61cb6d275d6791baa6a
8a4605be74aa9ea9d79846c1fba20a33
12ac41611b4501c52ed01f88254c8ddf
ea62fd99754567e00b72077107ba2080
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052342819946496
spelling Rodríguez López, Martha LucíaTobón Vallejo, Diana PatriciaMúnera Ramírez, Danny AlexandroIntelligent Information Systems Lab.Grupo de Investigación en Telecomunicaciones Aplicadas (GITA)2024-12-17T17:02:59Z2024-12-17T17:02:59Z20252543-1536https://hdl.handle.net/10495/4414610.1016/j.iot.2024.1014462542-6605ABSTRACT: Introducing the Industrial Internet of Things (IIoT) into traditional industrial processes has marked a new era of enhanced connectivity and productivity. By integrating advanced sensors, communication technologies, and data analysis, IIoT enables real-time monitoring, proactive maintenance, and increased operational efficiency. However, this increased complexity and interconnectivity also introduce new challenges in maintaining system dependability and safety. Considering these issues, this work presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies such as failures and attacks. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a comprehensive and scalable solution adaptable to various industrial contexts. The framework comprises two main components: an anomaly detection model and an anomaly classification model. The anomaly detection model operates unsupervised, continuously monitoring system data to identify deviations from normal behavior patterns. At the same time, the anomaly classification model categorizes these anomalies based on historical data using machine learning algorithms. The proposed framework has been tested in a realistic IIoT environment, demonstrating its effectiveness and practicality. During the cross-validation process, a precision of 0.95, recall of 0.88, and F1-score equal to 0.91 were obtained. This research contributes significantly to IIoT, offering a valuable tool for improving industrial operations and laying the groundwork for future anomaly classification and system resilience advancements.COL0025934COL004444819 páginasapplication/pdfengElsevierÁmsterdam, Países Bajoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Detección de anomalías (Seguridad informática)Anomaly detection (Computer security)Context-aware computingInternet de las CosasInternet of ThingsClasificaciónClassificationTecnología de las comunicacionesCommunication technologyhttp://id.loc.gov/authorities/subjects/sh2005007675http://id.loc.gov/authorities/subjects/sh2008007436https://id.nlm.nih.gov/mesh/D000080487A framework for anomaly classification in Industrial Internet of Things systemsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionInternet Things J.19129Internet of ThingsPublicationORIGINALRodriguezMartha_2025_Framework_Anomaly_Classification.pdfRodriguezMartha_2025_Framework_Anomaly_Classification.pdfArtículo de investigaciónapplication/pdf2859818https://bibliotecadigital.udea.edu.co/bitstreams/d0eff814-c9a7-40b4-acf3-1d48599b8899/downloadfb994072c2dba61cb6d275d6791baa6aMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/b471cbaa-e8f6-494f-9c16-eb656922f572/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTRodriguezMartha_2025_Framework_Anomaly_Classification.pdf.txtRodriguezMartha_2025_Framework_Anomaly_Classification.pdf.txtExtracted texttext/plain84667https://bibliotecadigital.udea.edu.co/bitstreams/14f4f609-f798-4637-baed-4dafaec33fb8/download12ac41611b4501c52ed01f88254c8ddfMD53falseAnonymousREADTHUMBNAILRodriguezMartha_2025_Framework_Anomaly_Classification.pdf.jpgRodriguezMartha_2025_Framework_Anomaly_Classification.pdf.jpgGenerated Thumbnailimage/jpeg13489https://bibliotecadigital.udea.edu.co/bitstreams/63b80fd9-5f5a-4244-9631-5433b34f4d7a/downloadea62fd99754567e00b72077107ba2080MD54falseAnonymousREAD10495/44146oai:bibliotecadigital.udea.edu.co:10495/441462025-03-26 20:53:18.372http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=