A framework for anomaly classification in Industrial Internet of Things systems
ABSTRACT: Introducing the Industrial Internet of Things (IIoT) into traditional industrial processes has marked a new era of enhanced connectivity and productivity. By integrating advanced sensors, communication technologies, and data analysis, IIoT enables real-time monitoring, proactive maintenanc...
- Autores:
-
Rodríguez López, Martha Lucía
Tobón Vallejo, Diana Patricia
Múnera Ramírez, Danny Alexandro
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/44146
- Acceso en línea:
- https://hdl.handle.net/10495/44146
- Palabra clave:
- Detección de anomalías (Seguridad informática)
Anomaly detection (Computer security)
Context-aware computing
Internet de las Cosas
Internet of Things
Clasificación
Classification
Tecnología de las comunicaciones
Communication technology
http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
https://id.nlm.nih.gov/mesh/D000080487
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_50b0f00af670d094c5ab5f7de87484bd |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/44146 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
A framework for anomaly classification in Industrial Internet of Things systems |
| title |
A framework for anomaly classification in Industrial Internet of Things systems |
| spellingShingle |
A framework for anomaly classification in Industrial Internet of Things systems Detección de anomalías (Seguridad informática) Anomaly detection (Computer security) Context-aware computing Internet de las Cosas Internet of Things Clasificación Classification Tecnología de las comunicaciones Communication technology http://id.loc.gov/authorities/subjects/sh2005007675 http://id.loc.gov/authorities/subjects/sh2008007436 https://id.nlm.nih.gov/mesh/D000080487 |
| title_short |
A framework for anomaly classification in Industrial Internet of Things systems |
| title_full |
A framework for anomaly classification in Industrial Internet of Things systems |
| title_fullStr |
A framework for anomaly classification in Industrial Internet of Things systems |
| title_full_unstemmed |
A framework for anomaly classification in Industrial Internet of Things systems |
| title_sort |
A framework for anomaly classification in Industrial Internet of Things systems |
| dc.creator.fl_str_mv |
Rodríguez López, Martha Lucía Tobón Vallejo, Diana Patricia Múnera Ramírez, Danny Alexandro |
| dc.contributor.author.none.fl_str_mv |
Rodríguez López, Martha Lucía Tobón Vallejo, Diana Patricia Múnera Ramírez, Danny Alexandro |
| dc.contributor.researchgroup.spa.fl_str_mv |
Intelligent Information Systems Lab. Grupo de Investigación en Telecomunicaciones Aplicadas (GITA) |
| dc.subject.lcsh.none.fl_str_mv |
Detección de anomalías (Seguridad informática) Anomaly detection (Computer security) Context-aware computing |
| topic |
Detección de anomalías (Seguridad informática) Anomaly detection (Computer security) Context-aware computing Internet de las Cosas Internet of Things Clasificación Classification Tecnología de las comunicaciones Communication technology http://id.loc.gov/authorities/subjects/sh2005007675 http://id.loc.gov/authorities/subjects/sh2008007436 https://id.nlm.nih.gov/mesh/D000080487 |
| dc.subject.decs.none.fl_str_mv |
Internet de las Cosas Internet of Things |
| dc.subject.lemb.none.fl_str_mv |
Clasificación Classification Tecnología de las comunicaciones Communication technology |
| dc.subject.lcshuri.none.fl_str_mv |
http://id.loc.gov/authorities/subjects/sh2005007675 http://id.loc.gov/authorities/subjects/sh2008007436 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D000080487 |
| description |
ABSTRACT: Introducing the Industrial Internet of Things (IIoT) into traditional industrial processes has marked a new era of enhanced connectivity and productivity. By integrating advanced sensors, communication technologies, and data analysis, IIoT enables real-time monitoring, proactive maintenance, and increased operational efficiency. However, this increased complexity and interconnectivity also introduce new challenges in maintaining system dependability and safety. Considering these issues, this work presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies such as failures and attacks. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a comprehensive and scalable solution adaptable to various industrial contexts. The framework comprises two main components: an anomaly detection model and an anomaly classification model. The anomaly detection model operates unsupervised, continuously monitoring system data to identify deviations from normal behavior patterns. At the same time, the anomaly classification model categorizes these anomalies based on historical data using machine learning algorithms. The proposed framework has been tested in a realistic IIoT environment, demonstrating its effectiveness and practicality. During the cross-validation process, a precision of 0.95, recall of 0.88, and F1-score equal to 0.91 were obtained. This research contributes significantly to IIoT, offering a valuable tool for improving industrial operations and laying the groundwork for future anomaly classification and system resilience advancements. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-12-17T17:02:59Z |
| dc.date.available.none.fl_str_mv |
2024-12-17T17:02:59Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2543-1536 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/44146 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.iot.2024.101446 |
| dc.identifier.eissn.none.fl_str_mv |
2542-6605 |
| identifier_str_mv |
2543-1536 10.1016/j.iot.2024.101446 2542-6605 |
| url |
https://hdl.handle.net/10495/44146 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Internet Things J. |
| dc.relation.citationendpage.spa.fl_str_mv |
19 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
29 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Internet of Things |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
19 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Ámsterdam, Países Bajos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/d0eff814-c9a7-40b4-acf3-1d48599b8899/download https://bibliotecadigital.udea.edu.co/bitstreams/b471cbaa-e8f6-494f-9c16-eb656922f572/download https://bibliotecadigital.udea.edu.co/bitstreams/14f4f609-f798-4637-baed-4dafaec33fb8/download https://bibliotecadigital.udea.edu.co/bitstreams/63b80fd9-5f5a-4244-9631-5433b34f4d7a/download |
| bitstream.checksum.fl_str_mv |
fb994072c2dba61cb6d275d6791baa6a 8a4605be74aa9ea9d79846c1fba20a33 12ac41611b4501c52ed01f88254c8ddf ea62fd99754567e00b72077107ba2080 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052342819946496 |
| spelling |
Rodríguez López, Martha LucíaTobón Vallejo, Diana PatriciaMúnera Ramírez, Danny AlexandroIntelligent Information Systems Lab.Grupo de Investigación en Telecomunicaciones Aplicadas (GITA)2024-12-17T17:02:59Z2024-12-17T17:02:59Z20252543-1536https://hdl.handle.net/10495/4414610.1016/j.iot.2024.1014462542-6605ABSTRACT: Introducing the Industrial Internet of Things (IIoT) into traditional industrial processes has marked a new era of enhanced connectivity and productivity. By integrating advanced sensors, communication technologies, and data analysis, IIoT enables real-time monitoring, proactive maintenance, and increased operational efficiency. However, this increased complexity and interconnectivity also introduce new challenges in maintaining system dependability and safety. Considering these issues, this work presents an IIoT Anomaly Classification Framework designed to detect and categorize anomalies such as failures and attacks. The research addresses the critical need for robust anomaly detection and classification in IIoT systems by providing a comprehensive and scalable solution adaptable to various industrial contexts. The framework comprises two main components: an anomaly detection model and an anomaly classification model. The anomaly detection model operates unsupervised, continuously monitoring system data to identify deviations from normal behavior patterns. At the same time, the anomaly classification model categorizes these anomalies based on historical data using machine learning algorithms. The proposed framework has been tested in a realistic IIoT environment, demonstrating its effectiveness and practicality. During the cross-validation process, a precision of 0.95, recall of 0.88, and F1-score equal to 0.91 were obtained. This research contributes significantly to IIoT, offering a valuable tool for improving industrial operations and laying the groundwork for future anomaly classification and system resilience advancements.COL0025934COL004444819 páginasapplication/pdfengElsevierÁmsterdam, Países Bajoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Detección de anomalías (Seguridad informática)Anomaly detection (Computer security)Context-aware computingInternet de las CosasInternet of ThingsClasificaciónClassificationTecnología de las comunicacionesCommunication technologyhttp://id.loc.gov/authorities/subjects/sh2005007675http://id.loc.gov/authorities/subjects/sh2008007436https://id.nlm.nih.gov/mesh/D000080487A framework for anomaly classification in Industrial Internet of Things systemsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionInternet Things J.19129Internet of ThingsPublicationORIGINALRodriguezMartha_2025_Framework_Anomaly_Classification.pdfRodriguezMartha_2025_Framework_Anomaly_Classification.pdfArtículo de investigaciónapplication/pdf2859818https://bibliotecadigital.udea.edu.co/bitstreams/d0eff814-c9a7-40b4-acf3-1d48599b8899/downloadfb994072c2dba61cb6d275d6791baa6aMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/b471cbaa-e8f6-494f-9c16-eb656922f572/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTRodriguezMartha_2025_Framework_Anomaly_Classification.pdf.txtRodriguezMartha_2025_Framework_Anomaly_Classification.pdf.txtExtracted texttext/plain84667https://bibliotecadigital.udea.edu.co/bitstreams/14f4f609-f798-4637-baed-4dafaec33fb8/download12ac41611b4501c52ed01f88254c8ddfMD53falseAnonymousREADTHUMBNAILRodriguezMartha_2025_Framework_Anomaly_Classification.pdf.jpgRodriguezMartha_2025_Framework_Anomaly_Classification.pdf.jpgGenerated Thumbnailimage/jpeg13489https://bibliotecadigital.udea.edu.co/bitstreams/63b80fd9-5f5a-4244-9631-5433b34f4d7a/downloadea62fd99754567e00b72077107ba2080MD54falseAnonymousREAD10495/44146oai:bibliotecadigital.udea.edu.co:10495/441462025-03-26 20:53:18.372http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
