Vertex-degree-based topological indices over trees with two branching vertices
ABSTRACT: Given a graph G with n vertices, a vertex-degree-based topological index is defined from a set of real numbers {φij} as T I (G) = Pmij (G) φij , where mij (G) is the number of edges between vertices of degree i and degree j, and the sum runs over all 1 ≤ i ≤ j ≤ n − 1. Let Ω (n, 2) denote...
- Autores:
-
Cruz Rodes, Roberto
Rada Rincón, Juan Pablo
Marín Arango, Carlos Alberto
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/39511
- Acceso en línea:
- https://hdl.handle.net/10495/39511
- Palabra clave:
- Vertex operator algebras
índice topológico
http://id.loc.gov/authorities/subjects/sh88005699
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_4e4da8e979216fddccf58fd23c14d8c8 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/39511 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Vertex-degree-based topological indices over trees with two branching vertices |
| title |
Vertex-degree-based topological indices over trees with two branching vertices |
| spellingShingle |
Vertex-degree-based topological indices over trees with two branching vertices Vertex operator algebras índice topológico http://id.loc.gov/authorities/subjects/sh88005699 |
| title_short |
Vertex-degree-based topological indices over trees with two branching vertices |
| title_full |
Vertex-degree-based topological indices over trees with two branching vertices |
| title_fullStr |
Vertex-degree-based topological indices over trees with two branching vertices |
| title_full_unstemmed |
Vertex-degree-based topological indices over trees with two branching vertices |
| title_sort |
Vertex-degree-based topological indices over trees with two branching vertices |
| dc.creator.fl_str_mv |
Cruz Rodes, Roberto Rada Rincón, Juan Pablo Marín Arango, Carlos Alberto |
| dc.contributor.author.none.fl_str_mv |
Cruz Rodes, Roberto Rada Rincón, Juan Pablo Marín Arango, Carlos Alberto |
| dc.contributor.researchgroup.spa.fl_str_mv |
Álgebra U de A |
| dc.subject.lcsh.none.fl_str_mv |
Vertex operator algebras |
| topic |
Vertex operator algebras índice topológico http://id.loc.gov/authorities/subjects/sh88005699 |
| dc.subject.proposal.spa.fl_str_mv |
índice topológico |
| dc.subject.lcshuri.none.fl_str_mv |
http://id.loc.gov/authorities/subjects/sh88005699 |
| description |
ABSTRACT: Given a graph G with n vertices, a vertex-degree-based topological index is defined from a set of real numbers {φij} as T I (G) = Pmij (G) φij , where mij (G) is the number of edges between vertices of degree i and degree j, and the sum runs over all 1 ≤ i ≤ j ≤ n − 1. Let Ω (n, 2) denote the set of all trees with n vertices and 2 branching vertices. In this paper we give conditions on the number {φij} under which the extremal trees with respect to T I can be determined. As a consequence, we find extremal trees in Ω (n, 2) for several well-known vertex-degree- based topological indices. |
| publishDate |
2019 |
| dc.date.issued.none.fl_str_mv |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-31T23:50:12Z |
| dc.date.available.none.fl_str_mv |
2024-05-31T23:50:12Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Bermudo, Sergio & Cruz, Roberto & Rada, Juan. (2022). Vertex-degree-based topological indices of oriented trees. Applied Mathematics and Computation. 433. 127395. 10.1016/j.amc.2022.127395. |
| dc.identifier.issn.none.fl_str_mv |
1450-9628 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/39511 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.amc.2022.127395 |
| dc.identifier.eissn.none.fl_str_mv |
2406-3045 |
| identifier_str_mv |
Bermudo, Sergio & Cruz, Roberto & Rada, Juan. (2022). Vertex-degree-based topological indices of oriented trees. Applied Mathematics and Computation. 433. 127395. 10.1016/j.amc.2022.127395. 1450-9628 10.1016/j.amc.2022.127395 2406-3045 |
| url |
https://hdl.handle.net/10495/39511 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Kragujev. J. Math. |
| dc.relation.citationendpage.spa.fl_str_mv |
411 |
| dc.relation.citationissue.spa.fl_str_mv |
3 |
| dc.relation.citationstartpage.spa.fl_str_mv |
399 |
| dc.relation.citationvolume.spa.fl_str_mv |
43 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Kragujevac Journal of Mathematics |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
13 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Kragujevac, Facultad de Ciencias |
| dc.publisher.place.spa.fl_str_mv |
Kragujevac, Serbia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/c28b306a-80f9-40c9-8875-08cf196829f2/download https://bibliotecadigital.udea.edu.co/bitstreams/b77bdff9-bf0d-4ea1-b634-63f9f31e9d45/download https://bibliotecadigital.udea.edu.co/bitstreams/7f65a9ea-b488-4ad0-a6d4-392b0cc57bae/download |
| bitstream.checksum.fl_str_mv |
b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 dc97b6b8209c3edc141d2233e8e5ea71 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052305087987712 |
| spelling |
Cruz Rodes, RobertoRada Rincón, Juan PabloMarín Arango, Carlos AlbertoÁlgebra U de A2024-05-31T23:50:12Z2024-05-31T23:50:12Z2019Bermudo, Sergio & Cruz, Roberto & Rada, Juan. (2022). Vertex-degree-based topological indices of oriented trees. Applied Mathematics and Computation. 433. 127395. 10.1016/j.amc.2022.127395.1450-9628https://hdl.handle.net/10495/3951110.1016/j.amc.2022.1273952406-3045ABSTRACT: Given a graph G with n vertices, a vertex-degree-based topological index is defined from a set of real numbers {φij} as T I (G) = Pmij (G) φij , where mij (G) is the number of edges between vertices of degree i and degree j, and the sum runs over all 1 ≤ i ≤ j ≤ n − 1. Let Ω (n, 2) denote the set of all trees with n vertices and 2 branching vertices. In this paper we give conditions on the number {φij} under which the extremal trees with respect to T I can be determined. As a consequence, we find extremal trees in Ω (n, 2) for several well-known vertex-degree- based topological indices.COL008689613 páginasapplication/pdfengUniversidad de Kragujevac, Facultad de CienciasKragujevac, Serbiahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vertex operator algebrasíndice topológicohttp://id.loc.gov/authorities/subjects/sh88005699Vertex-degree-based topological indices over trees with two branching verticesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionKragujev. J. Math.411339943Kragujevac Journal of MathematicsPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/c28b306a-80f9-40c9-8875-08cf196829f2/downloadb88b088d9957e670ce3b3fbe2eedbc13MD51falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/b77bdff9-bf0d-4ea1-b634-63f9f31e9d45/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADORIGINALCruzRoberto_2019_Vertex-degree-based.pdfCruzRoberto_2019_Vertex-degree-based.pdfArtículo de investigaciónapplication/octet-stream518913https://bibliotecadigital.udea.edu.co/bitstreams/7f65a9ea-b488-4ad0-a6d4-392b0cc57bae/downloaddc97b6b8209c3edc141d2233e8e5ea71MD53trueAnonymousREAD10495/39511oai:bibliotecadigital.udea.edu.co:10495/395112025-03-25 21:08:04.318https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
