Bivariate Generalization of The Inverted Hypergeometric Function Type I Distribution
The bivariate inverted hypergeometric function type I distribution is defined by the probability density function proportional to x ν1−1 1 x ν2−1 2 1 + x1 + x2 −(ν1+ν2+γ) 2 F1 (α,β;γ;(1 + x1 + x2 )−1),x1 > 0, x2 > 0, where ν1, ν2, α, β and γ are suitable constants. In this article, we study se...
- Autores:
-
Nagar, Daya Krishna
Zarrazola Rivera Edwin De Jesús
Brand Cardona, Paula Andrea
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2012
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/46925
- Acceso en línea:
- https://hdl.handle.net/10495/46925
- Palabra clave:
- Transformaciones (Matemáticas)
Transformations (Mathematics)
Funciones hipergeométricas
Hypergeometric functions
Funciones beta
Beta functions
Distribución de Gauss
Gauss distribution
http://id.loc.gov/authorities/subjects/sh85136920
http://id.loc.gov/authorities/subjects/sh85052340
http://id.loc.gov/authorities/subjects/sh85052332
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
