Bivariate Generalization of The Inverted Hypergeometric Function Type I Distribution

The bivariate inverted hypergeometric function type I distribution is defined by the probability density function proportional to x ν1−1 1 x ν2−1 2 1 + x1 + x2 −(ν1+ν2+γ) 2 F1 (α,β;γ;(1 + x1 + x2 )−1),x1 > 0, x2 > 0, where ν1, ν2, α, β and γ are suitable constants. In this article, we study se...

Full description

Autores:
Nagar, Daya Krishna
Zarrazola Rivera Edwin De Jesús
Brand Cardona, Paula Andrea
Tipo de recurso:
Article of investigation
Fecha de publicación:
2012
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46925
Acceso en línea:
https://hdl.handle.net/10495/46925
Palabra clave:
Transformaciones (Matemáticas)
Transformations (Mathematics)
Funciones hipergeométricas
Hypergeometric functions
Funciones beta
Beta functions
Distribución de Gauss
Gauss distribution
http://id.loc.gov/authorities/subjects/sh85136920
http://id.loc.gov/authorities/subjects/sh85052340
http://id.loc.gov/authorities/subjects/sh85052332
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
Description
Summary:The bivariate inverted hypergeometric function type I distribution is defined by the probability density function proportional to x ν1−1 1 x ν2−1 2 1 + x1 + x2 −(ν1+ν2+γ) 2 F1 (α,β;γ;(1 + x1 + x2 )−1),x1 > 0, x2 > 0, where ν1, ν2, α, β and γ are suitable constants. In this article, we study severalproperties of this distribution and derive density functions of X1/X2, X1/(X1 + X2) and X1 + X2. We also consider several products involving bivariate inverted hypergeometric function type I, beta type I, beta type II, beta type III, Kummer-beta and hypergeometric function type I variable