Gait classification of parkinson’s disease patients using efficient representations from autoencoders

ABSTRACT : Parkinson’s Disease (PD) is one of the most common neurodegenerative diseases. Patients manifest a progressive degeneration of dopamine, which plays a key role in abilities such as the locomotion, cognitive capabilities, sleep regulation and mood. One of the symptoms of the disease is the...

Full description

Autores:
Guerrero Cristancho, Juan Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30530
Acceso en línea:
https://hdl.handle.net/10495/30530
Palabra clave:
Parkinson Disease
Enfermedad de Parkinson
Machine learning
Aprendizaje automático (Inteligencia artificial)
Neural networks (Computer science)
Redes neurales (computadores)
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_4c549bb4e55dd1d678ef5d84dad19c96
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30530
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Gait classification of parkinson’s disease patients using efficient representations from autoencoders
title Gait classification of parkinson’s disease patients using efficient representations from autoencoders
spellingShingle Gait classification of parkinson’s disease patients using efficient representations from autoencoders
Parkinson Disease
Enfermedad de Parkinson
Machine learning
Aprendizaje automático (Inteligencia artificial)
Neural networks (Computer science)
Redes neurales (computadores)
title_short Gait classification of parkinson’s disease patients using efficient representations from autoencoders
title_full Gait classification of parkinson’s disease patients using efficient representations from autoencoders
title_fullStr Gait classification of parkinson’s disease patients using efficient representations from autoencoders
title_full_unstemmed Gait classification of parkinson’s disease patients using efficient representations from autoencoders
title_sort Gait classification of parkinson’s disease patients using efficient representations from autoencoders
dc.creator.fl_str_mv Guerrero Cristancho, Juan Sebastián
dc.contributor.advisor.none.fl_str_mv Orozco Arroyave, Juan Rafael
Pérez Toro, Paula Andrea
dc.contributor.author.none.fl_str_mv Guerrero Cristancho, Juan Sebastián
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Telecomunicaciones Aplicadas (GITA)
dc.subject.decs.none.fl_str_mv Parkinson Disease
Enfermedad de Parkinson
topic Parkinson Disease
Enfermedad de Parkinson
Machine learning
Aprendizaje automático (Inteligencia artificial)
Neural networks (Computer science)
Redes neurales (computadores)
dc.subject.lemb.none.fl_str_mv Machine learning
Aprendizaje automático (Inteligencia artificial)
Neural networks (Computer science)
Redes neurales (computadores)
description ABSTRACT : Parkinson’s Disease (PD) is one of the most common neurodegenerative diseases. Patients manifest a progressive degeneration of dopamine, which plays a key role in abilities such as the locomotion, cognitive capabilities, sleep regulation and mood. One of the symptoms of the disease is the progressive gait impairment, resting tremors, slowness of movement, shuffling steps, among others. There is interest among the scientific community to develop automatic classification systems to support the diagnosis. The goal is to properly discriminate the disease and to predict the neurological state of the patients. This work focuses on the use of Convolutional Auto-Encoders to obtain efficient representations from multi-channel gait signals from Smartphones and sensors to classify PD patients vs. Healthy subjects. The channels represent the acceleration in the 3-dimensional plane (X, Y, Z). The proposed experiments consist of three models using 64, 128, and 256-dimensional bottlenecks to compress the information of gait signals. The accuracy and unweighted average recall are used to evaluate the classification performance over the PC-GITA database, from which 38 controls and 38 subjects were used for training the neural networks, and 30 patients and healthy subjects were used as test dataset. The subjects were asked to perform the 4x10 gait task, which consists of four repetitions of walking for 10 meters, stop and perform a 180° turn. A Stratified 5-Fold-Cross-Validation strategy is used to evaluate the performance of a Support Vector Machine over the testing dataset. The results indicate that the 64-dimensional bottlenecks provide enough information to properly differentiate between patients and controls. The results report accuracy of up to 85%, and Unweighted average recall values of 93%. Additionally, the area under the ROC curve is reported for each fold. There is no variation in the results when considering gait signals with non-randomized and randomized channels. It is concluded that the methodology is suitable to classify patients vs. healthy subjects, despite of the different origins from the signals and the challenges that different sampling frequencies impose for such a methodology.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-08T22:40:38Z
dc.date.available.none.fl_str_mv 2022-09-08T22:40:38Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30530
url https://hdl.handle.net/10495/30530
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 38
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín - Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería. Ingeniería Electrónica
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/45247725-e8a9-431a-bbf3-cb8d6e3ccad8/download
https://bibliotecadigital.udea.edu.co/bitstreams/2a9b6582-4c10-4152-9264-6fbc4c00ea51/download
https://bibliotecadigital.udea.edu.co/bitstreams/ef49a4ef-110c-4362-b046-1bac54289ef7/download
https://bibliotecadigital.udea.edu.co/bitstreams/3872481f-ae30-4b82-8849-9566879e7a9b/download
https://bibliotecadigital.udea.edu.co/bitstreams/d2ddeed2-fd1d-4415-be1d-7b8c9f7de014/download
bitstream.checksum.fl_str_mv 392d89b92978b224dc53e256978c9bab
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
a75eddc255802dac61f5f4a05b2631b6
53f8414daab181075ab92b5c89b0c9c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052648553250816
spelling Orozco Arroyave, Juan RafaelPérez Toro, Paula AndreaGuerrero Cristancho, Juan SebastiánGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)2022-09-08T22:40:38Z2022-09-08T22:40:38Z2022https://hdl.handle.net/10495/30530ABSTRACT : Parkinson’s Disease (PD) is one of the most common neurodegenerative diseases. Patients manifest a progressive degeneration of dopamine, which plays a key role in abilities such as the locomotion, cognitive capabilities, sleep regulation and mood. One of the symptoms of the disease is the progressive gait impairment, resting tremors, slowness of movement, shuffling steps, among others. There is interest among the scientific community to develop automatic classification systems to support the diagnosis. The goal is to properly discriminate the disease and to predict the neurological state of the patients. This work focuses on the use of Convolutional Auto-Encoders to obtain efficient representations from multi-channel gait signals from Smartphones and sensors to classify PD patients vs. Healthy subjects. The channels represent the acceleration in the 3-dimensional plane (X, Y, Z). The proposed experiments consist of three models using 64, 128, and 256-dimensional bottlenecks to compress the information of gait signals. The accuracy and unweighted average recall are used to evaluate the classification performance over the PC-GITA database, from which 38 controls and 38 subjects were used for training the neural networks, and 30 patients and healthy subjects were used as test dataset. The subjects were asked to perform the 4x10 gait task, which consists of four repetitions of walking for 10 meters, stop and perform a 180° turn. A Stratified 5-Fold-Cross-Validation strategy is used to evaluate the performance of a Support Vector Machine over the testing dataset. The results indicate that the 64-dimensional bottlenecks provide enough information to properly differentiate between patients and controls. The results report accuracy of up to 85%, and Unweighted average recall values of 93%. Additionally, the area under the ROC curve is reported for each fold. There is no variation in the results when considering gait signals with non-randomized and randomized channels. It is concluded that the methodology is suitable to classify patients vs. healthy subjects, despite of the different origins from the signals and the challenges that different sampling frequencies impose for such a methodology.PregradoIngeniero Electrónico38application/pdfengUniversidad de AntioquiaMedellín - ColombiaFacultad de Ingeniería. Ingeniería Electrónicahttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gait classification of parkinson’s disease patients using efficient representations from autoencodersTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftParkinson DiseaseEnfermedad de ParkinsonMachine learningAprendizaje automático (Inteligencia artificial)Neural networks (Computer science)Redes neurales (computadores)PublicationORIGINALGuerreroJuan_2022_ClassificationParkinsonPatients.pdfGuerreroJuan_2022_ClassificationParkinsonPatients.pdfTrabajo de grado de pregradoapplication/pdf3185754https://bibliotecadigital.udea.edu.co/bitstreams/45247725-e8a9-431a-bbf3-cb8d6e3ccad8/download392d89b92978b224dc53e256978c9babMD54trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/2a9b6582-4c10-4152-9264-6fbc4c00ea51/download1646d1f6b96dbbbc38035efc9239ac9cMD55falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/ef49a4ef-110c-4362-b046-1bac54289ef7/download8a4605be74aa9ea9d79846c1fba20a33MD56falseAnonymousREADTEXTGuerreroJuan_2022_ClassificationParkinsonPatients.pdf.txtGuerreroJuan_2022_ClassificationParkinsonPatients.pdf.txtExtracted texttext/plain47823https://bibliotecadigital.udea.edu.co/bitstreams/3872481f-ae30-4b82-8849-9566879e7a9b/downloada75eddc255802dac61f5f4a05b2631b6MD57falseAnonymousREADTHUMBNAILGuerreroJuan_2022_ClassificationParkinsonPatients.pdf.jpgGuerreroJuan_2022_ClassificationParkinsonPatients.pdf.jpgGenerated Thumbnailimage/jpeg6936https://bibliotecadigital.udea.edu.co/bitstreams/d2ddeed2-fd1d-4415-be1d-7b8c9f7de014/download53f8414daab181075ab92b5c89b0c9c2MD58falseAnonymousREAD10495/30530oai:bibliotecadigital.udea.edu.co:10495/305302025-03-27 01:37:30.639https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=