Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling

ABSTRACT: Hydrogen with its high e nergetic density ( 119 .7 MJ/ and facile production through water electrolysis , is a viable alternative energy source. Nevertheless, its low volumetric density and high flammability present challenges for mobile applications [ In response, s olid state storage of...

Full description

Autores:
Cortínez Osorio, Joan Santiago
Gómez Vélez, Alejandro
Zuleta Gil, Alejandro Alberto
Tamayo Sepúlveda, José Adrián
Correa Bedoya, Esteban
Vargas Ramírez, Andrés Felipe
Ramírez Sánchez, Carolina
Bolivar Osorio, Francisco Javier
Echeverría Echeverría, Félix
Tipo de recurso:
http://purl.org/coar/resource_type/c_5794
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/40628
Acceso en línea:
https://hdl.handle.net/10495/40628
Palabra clave:
Nanopartículas de níquel
Nickel nanoparticles
Hidruros
Hydrides
Hidrógeno
Hydrogen
http://id.loc.gov/authorities/subjects/sh2020010538
http://id.loc.gov/authorities/subjects/sh85063361
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id UDEA2_4c4eef39ade44370328294b0e72e654e
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/40628
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling
title Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling
spellingShingle Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling
Nanopartículas de níquel
Nickel nanoparticles
Hidruros
Hydrides
Hidrógeno
Hydrogen
http://id.loc.gov/authorities/subjects/sh2020010538
http://id.loc.gov/authorities/subjects/sh85063361
title_short Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling
title_full Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling
title_fullStr Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling
title_full_unstemmed Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling
title_sort Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling
dc.creator.fl_str_mv Cortínez Osorio, Joan Santiago
Gómez Vélez, Alejandro
Zuleta Gil, Alejandro Alberto
Tamayo Sepúlveda, José Adrián
Correa Bedoya, Esteban
Vargas Ramírez, Andrés Felipe
Ramírez Sánchez, Carolina
Bolivar Osorio, Francisco Javier
Echeverría Echeverría, Félix
dc.contributor.author.none.fl_str_mv Cortínez Osorio, Joan Santiago
Gómez Vélez, Alejandro
Zuleta Gil, Alejandro Alberto
Tamayo Sepúlveda, José Adrián
Correa Bedoya, Esteban
Vargas Ramírez, Andrés Felipe
Ramírez Sánchez, Carolina
Bolivar Osorio, Francisco Javier
Echeverría Echeverría, Félix
dc.contributor.conferencename.spa.fl_str_mv World Hydrogen Energy Conference (24 : del 23 al 27 de junio de 2024 : Cancún, México)
dc.contributor.researchgroup.spa.fl_str_mv Centro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)
dc.subject.lcsh.none.fl_str_mv Nanopartículas de níquel
Nickel nanoparticles
Hidruros
Hydrides
topic Nanopartículas de níquel
Nickel nanoparticles
Hidruros
Hydrides
Hidrógeno
Hydrogen
http://id.loc.gov/authorities/subjects/sh2020010538
http://id.loc.gov/authorities/subjects/sh85063361
dc.subject.lemb.none.fl_str_mv Hidrógeno
Hydrogen
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2020010538
http://id.loc.gov/authorities/subjects/sh85063361
description ABSTRACT: Hydrogen with its high e nergetic density ( 119 .7 MJ/ and facile production through water electrolysis , is a viable alternative energy source. Nevertheless, its low volumetric density and high flammability present challenges for mobile applications [ In response, s olid state storage of hydrogen using metal hydrides has emerged as a promising solution for secure transport and storage of this energy carrier , facilitating its u tilization as a clean fuel source [2], [ 3]. Magnesium, with its low density, natural abundance, affordability, and reversible hydrogenation /dehydrogenation capabilities, stands out as one of the most promising metals for this purpose [ 4]. However, optimizing its t hermodynamic s and kinetic s f or practical applications remain a challenge [Researchers have explored modifications, including morphological changes and nanoparticle additions via high energy ball milling (HEBM). While t hese alterations show improvements in hydrogen storage properties, they often negatively impact gravimetric capacity, theoretically set at 7.6 wt.% for pure Mg [ 6]. Achieving t his full capacity is rar e due to limitations in reaction mechanisms such as the sluggish diffusion of hydrogen through the newly formed MgH 2 on the surface of Mg leading to capacitie s below 4 w t [ Hence a systematic approach that includes both morphological modifications through HEBM and the addition of Ni nanoparticles to pure Mg could help to imp rove the gravimetric capacity of commercially pure M g and kinetics of absorption In this research, we propose a novel two step method of surfactant assisted HEBM to synthesize Mg thin flakes with a thickness of 260 ± 67 nm. This method enables a storage capacity of 4.8 wt.% hydrogen at 350°C and 2 0 bar owing to th e combination of interfacial effects and the shortening of diffusion pathways in one dimension for hydrogen atoms [ 8]. This showcases the potential use of this flake like shaped Mg for efficient hydrogen storage. Additionally, the dispersion of Ni nanoparticles (5 wt.%) on the surface of Mg ultra thin flakes leads to a reduction in the time for maximum absorption from 5 min to 3 min, at the expense of a slight decrease in the hydrogen uptake capacity to approximate ly 4. 5 wt.% at 350°C and 20 bar A Sieverts type apparatus of our own design and construction is employed for pre activation and sorption/desorption tests SEM EDS analysis is conducted to characterize the morphology and elemental composition of the samples before and after hydrogen tests . D uring the activation process the formation of the complex Mg 2 NiH 4 phase is observed through XRD analysis, suggesting potential for lo wer hydrogenation temperatures and improved thermodynamics for the system [ 9]. N i nanoparticles could potentially act as both catalysts and thermodynamic destabilizers of the obtained Mg thin flakes.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-18T19:38:58Z
dc.date.available.none.fl_str_mv 2024-07-18T19:38:58Z
dc.date.issued.none.fl_str_mv 2024-06-25
dc.type.spa.fl_str_mv Documento de conferencia
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_5794
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/EC
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_5794
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/40628
url https://hdl.handle.net/10495/40628
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.conferencedate.spa.fl_str_mv 2023-06-23/2023-06-27
dc.relation.conferenceplace.spa.fl_str_mv Cancún, México
dc.relation.ispartofjournal.spa.fl_str_mv 24th World Hydrogen Energy Conference (WHEC-2024)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/3564df7e-e433-48a2-b571-fbe0d9ba4097/download
https://bibliotecadigital.udea.edu.co/bitstreams/d4a11772-08e2-451f-9f40-e3b112f6f472/download
https://bibliotecadigital.udea.edu.co/bitstreams/a327ca98-9c59-4938-b1d1-cb178d209746/download
https://bibliotecadigital.udea.edu.co/bitstreams/6e2aaedc-43c0-4cc6-bbc7-2de0cba5a7d6/download
https://bibliotecadigital.udea.edu.co/bitstreams/6bae92a0-f8e7-44ae-b5a5-07bd06f08cd2/download
https://bibliotecadigital.udea.edu.co/bitstreams/4f36830e-0545-438f-a5fd-de063bebff1b/download
https://bibliotecadigital.udea.edu.co/bitstreams/c6152836-5c05-4019-a922-fe095fdbe5c5/download
https://bibliotecadigital.udea.edu.co/bitstreams/21912f0c-33f2-44db-a105-f2e623b6d1f1/download
bitstream.checksum.fl_str_mv e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
d69e3ea62abad03fd8ecba7032134e96
f5054d63f791600cbacb1f7a361ac0f0
a746f299e3bc4419ae29df9ef50605d5
1e3ec93ac2bf1c7f7e4fdca9ccfaad76
367472ea6c265cc653d6f0ccd2b4a1d5
7ef785cc8a61e8a806c54b39349f5440
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052503008804864
spelling Cortínez Osorio, Joan SantiagoGómez Vélez, AlejandroZuleta Gil, Alejandro AlbertoTamayo Sepúlveda, José AdriánCorrea Bedoya, EstebanVargas Ramírez, Andrés FelipeRamírez Sánchez, CarolinaBolivar Osorio, Francisco JavierEcheverría Echeverría, FélixWorld Hydrogen Energy Conference (24 : del 23 al 27 de junio de 2024 : Cancún, México)Centro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)2024-07-18T19:38:58Z2024-07-18T19:38:58Z2024-06-25https://hdl.handle.net/10495/40628ABSTRACT: Hydrogen with its high e nergetic density ( 119 .7 MJ/ and facile production through water electrolysis , is a viable alternative energy source. Nevertheless, its low volumetric density and high flammability present challenges for mobile applications [ In response, s olid state storage of hydrogen using metal hydrides has emerged as a promising solution for secure transport and storage of this energy carrier , facilitating its u tilization as a clean fuel source [2], [ 3]. Magnesium, with its low density, natural abundance, affordability, and reversible hydrogenation /dehydrogenation capabilities, stands out as one of the most promising metals for this purpose [ 4]. However, optimizing its t hermodynamic s and kinetic s f or practical applications remain a challenge [Researchers have explored modifications, including morphological changes and nanoparticle additions via high energy ball milling (HEBM). While t hese alterations show improvements in hydrogen storage properties, they often negatively impact gravimetric capacity, theoretically set at 7.6 wt.% for pure Mg [ 6]. Achieving t his full capacity is rar e due to limitations in reaction mechanisms such as the sluggish diffusion of hydrogen through the newly formed MgH 2 on the surface of Mg leading to capacitie s below 4 w t [ Hence a systematic approach that includes both morphological modifications through HEBM and the addition of Ni nanoparticles to pure Mg could help to imp rove the gravimetric capacity of commercially pure M g and kinetics of absorption In this research, we propose a novel two step method of surfactant assisted HEBM to synthesize Mg thin flakes with a thickness of 260 ± 67 nm. This method enables a storage capacity of 4.8 wt.% hydrogen at 350°C and 2 0 bar owing to th e combination of interfacial effects and the shortening of diffusion pathways in one dimension for hydrogen atoms [ 8]. This showcases the potential use of this flake like shaped Mg for efficient hydrogen storage. Additionally, the dispersion of Ni nanoparticles (5 wt.%) on the surface of Mg ultra thin flakes leads to a reduction in the time for maximum absorption from 5 min to 3 min, at the expense of a slight decrease in the hydrogen uptake capacity to approximate ly 4. 5 wt.% at 350°C and 20 bar A Sieverts type apparatus of our own design and construction is employed for pre activation and sorption/desorption tests SEM EDS analysis is conducted to characterize the morphology and elemental composition of the samples before and after hydrogen tests . D uring the activation process the formation of the complex Mg 2 NiH 4 phase is observed through XRD analysis, suggesting potential for lo wer hydrogenation temperatures and improved thermodynamics for the system [ 9]. N i nanoparticles could potentially act as both catalysts and thermodynamic destabilizers of the obtained Mg thin flakes.Colombia. Ministerio de Ciencia, Tecnología e InnovaciónNuevos materialesCOL0007927application/pdfenghttp://creativecommons.org/licenses/by-nc-sa/2.5/co/https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nanopartículas de níquelNickel nanoparticlesHidrurosHydridesHidrógenoHydrogenhttp://id.loc.gov/authorities/subjects/sh2020010538http://id.loc.gov/authorities/subjects/sh85063361Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball MillingDocumento de conferenciahttp://purl.org/coar/resource_type/c_5794http://purl.org/coar/resource_type/c_c94fhttps://purl.org/redcol/resource_type/EChttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/draft2023-06-23/2023-06-27Cancún, México24th World Hydrogen Energy Conference (WHEC-2024)Aplicación de la nanotecnología al desarrollo de materiales basados en magnesio para almacenamiento de hidrógeno, con el fin de contribuir a viabilizar su uso como combustible limpio en sistemas de transporteRC No. 177 del 2021RoR:03fd5ne08$691.140.000 COPPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/3564df7e-e433-48a2-b571-fbe0d9ba4097/downloade2060682c9c70d4d30c83c51448f4eedMD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/d4a11772-08e2-451f-9f40-e3b112f6f472/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADORIGINALCortinezJoan_2024_Enhanced_Hydrogen_Storage.pdfCortinezJoan_2024_Enhanced_Hydrogen_Storage.pdfDocumento de conferenciaapplication/pdf2889970https://bibliotecadigital.udea.edu.co/bitstreams/a327ca98-9c59-4938-b1d1-cb178d209746/downloadd69e3ea62abad03fd8ecba7032134e96MD51trueAnonymousREADCortinezJoan_2024_Enhanced_Hydrogen_Storage_Abstract.pdfCortinezJoan_2024_Enhanced_Hydrogen_Storage_Abstract.pdfDocumento de conferenciaapplication/pdf171470https://bibliotecadigital.udea.edu.co/bitstreams/6e2aaedc-43c0-4cc6-bbc7-2de0cba5a7d6/downloadf5054d63f791600cbacb1f7a361ac0f0MD52falseAnonymousREADTEXTCortinezJoan_2024_Enhanced_Hydrogen_Storage.pdf.txtCortinezJoan_2024_Enhanced_Hydrogen_Storage.pdf.txtExtracted texttext/plain6354https://bibliotecadigital.udea.edu.co/bitstreams/6bae92a0-f8e7-44ae-b5a5-07bd06f08cd2/downloada746f299e3bc4419ae29df9ef50605d5MD55falseAnonymousREADCortinezJoan_2024_Enhanced_Hydrogen_Storage_Abstract.pdf.txtCortinezJoan_2024_Enhanced_Hydrogen_Storage_Abstract.pdf.txtExtracted texttext/plain7265https://bibliotecadigital.udea.edu.co/bitstreams/4f36830e-0545-438f-a5fd-de063bebff1b/download1e3ec93ac2bf1c7f7e4fdca9ccfaad76MD57falseAnonymousREADTHUMBNAILCortinezJoan_2024_Enhanced_Hydrogen_Storage.pdf.jpgCortinezJoan_2024_Enhanced_Hydrogen_Storage.pdf.jpgGenerated Thumbnailimage/jpeg7195https://bibliotecadigital.udea.edu.co/bitstreams/c6152836-5c05-4019-a922-fe095fdbe5c5/download367472ea6c265cc653d6f0ccd2b4a1d5MD56falseAnonymousREADCortinezJoan_2024_Enhanced_Hydrogen_Storage_Abstract.pdf.jpgCortinezJoan_2024_Enhanced_Hydrogen_Storage_Abstract.pdf.jpgGenerated Thumbnailimage/jpeg13384https://bibliotecadigital.udea.edu.co/bitstreams/21912f0c-33f2-44db-a105-f2e623b6d1f1/download7ef785cc8a61e8a806c54b39349f5440MD58falseAnonymousREAD10495/40628oai:bibliotecadigital.udea.edu.co:10495/406282025-03-26 23:25:45.683http://creativecommons.org/licenses/by-nc-sa/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=