Fluctuations of the Occupation Density for a Parking Process
ABSTRACT: Consider the following simple parking process on n := {−n,..., n}d , d ≥ 1: at each step, a site i is chosen at random in n and if i and all its nearest neighbor sites are empty, i is occupied. Once occupied, a site remains so forever. The process continues until all sites in n are either...
- Autores:
-
Roldán Correa, Alejandro
Valencia Henao, León Alexander
Gallo, Sandro
Coletti, Cristian F.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/43221
- Acceso en línea:
- https://hdl.handle.net/10495/43221
- Palabra clave:
- Teorema del límite central
Central limit theorem
Distribución asintótica (teoría de probabilidades)
Asymptotic distribution (probability theory)
Parking process
Jamming limit
Thermodynamic limit
Random sequential adsorption
Concentration inequalities
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_4bf1214136ee84e1615742fc548b363a |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/43221 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Fluctuations of the Occupation Density for a Parking Process |
| title |
Fluctuations of the Occupation Density for a Parking Process |
| spellingShingle |
Fluctuations of the Occupation Density for a Parking Process Teorema del límite central Central limit theorem Distribución asintótica (teoría de probabilidades) Asymptotic distribution (probability theory) Parking process Jamming limit Thermodynamic limit Random sequential adsorption Concentration inequalities |
| title_short |
Fluctuations of the Occupation Density for a Parking Process |
| title_full |
Fluctuations of the Occupation Density for a Parking Process |
| title_fullStr |
Fluctuations of the Occupation Density for a Parking Process |
| title_full_unstemmed |
Fluctuations of the Occupation Density for a Parking Process |
| title_sort |
Fluctuations of the Occupation Density for a Parking Process |
| dc.creator.fl_str_mv |
Roldán Correa, Alejandro Valencia Henao, León Alexander Gallo, Sandro Coletti, Cristian F. |
| dc.contributor.author.none.fl_str_mv |
Roldán Correa, Alejandro Valencia Henao, León Alexander Gallo, Sandro Coletti, Cristian F. |
| dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Multivariado Análisis Numérico y Financiero: Matemáticas aplicadas para la industria |
| dc.subject.lemb.none.fl_str_mv |
Teorema del límite central Central limit theorem Distribución asintótica (teoría de probabilidades) Asymptotic distribution (probability theory) |
| topic |
Teorema del límite central Central limit theorem Distribución asintótica (teoría de probabilidades) Asymptotic distribution (probability theory) Parking process Jamming limit Thermodynamic limit Random sequential adsorption Concentration inequalities |
| dc.subject.proposal.spa.fl_str_mv |
Parking process Jamming limit Thermodynamic limit Random sequential adsorption Concentration inequalities |
| description |
ABSTRACT: Consider the following simple parking process on n := {−n,..., n}d , d ≥ 1: at each step, a site i is chosen at random in n and if i and all its nearest neighbor sites are empty, i is occupied. Once occupied, a site remains so forever. The process continues until all sites in n are either occupied or have at least one of their nearest neighbors occupied. The final configuration (occupancy) of n is called the jamming limit and is denoted by Xn . Ritchie (J Stat Phys 122:381–398, 2006) constructed a stationary random field on Zd obtained as a (thermodynamic) limit of the Xn ’s as n tends to infinity. As a consequence of his construction, he proved a strong law of large numbers for the proportion of occupied sites in the box n for the random field X. Here we prove the central limit theorem, the law of iterated logarithm, and a gaussian concentration inequality for the same statistics. A particular attention will be given to the case d = 1, in which we also obtain new asymptotic properties for the sequence Xn , n ≥ 1. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-11-06T18:29:06Z |
| dc.date.available.none.fl_str_mv |
2024-11-06T18:29:06Z |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Coletti, C.F., Gallo, S., Roldán-Correa, A. et al. Fluctuations of the Occupation Density for a Parking Process. J Stat Phys 191, 146 (2024). https://doi.org/10.1007/s10955-024-03336-2 |
| dc.identifier.issn.none.fl_str_mv |
0022-4715 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/43221 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/s10955-024-03336-2 |
| dc.identifier.eissn.none.fl_str_mv |
1572-9613 |
| identifier_str_mv |
Coletti, C.F., Gallo, S., Roldán-Correa, A. et al. Fluctuations of the Occupation Density for a Parking Process. J Stat Phys 191, 146 (2024). https://doi.org/10.1007/s10955-024-03336-2 0022-4715 10.1007/s10955-024-03336-2 1572-9613 |
| url |
https://hdl.handle.net/10495/43221 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
J. Stat. Phys. |
| dc.relation.citationendpage.spa.fl_str_mv |
162 |
| dc.relation.citationissue.spa.fl_str_mv |
146 |
| dc.relation.citationstartpage.spa.fl_str_mv |
145 |
| dc.relation.citationvolume.spa.fl_str_mv |
191 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Statistical Physics |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
17 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Springer |
| dc.publisher.place.spa.fl_str_mv |
Nueva York, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/91e55415-5499-462e-8c2d-ebf13c4e6ccd/download https://bibliotecadigital.udea.edu.co/bitstreams/c1f6aca7-7082-4212-8c6c-5e660d3b3b6c/download https://bibliotecadigital.udea.edu.co/bitstreams/be849d78-004d-41d7-a102-2db715606705/download https://bibliotecadigital.udea.edu.co/bitstreams/fbf3543e-a8ed-49c4-92e8-66d91cb922d8/download https://bibliotecadigital.udea.edu.co/bitstreams/66b82862-f9d5-4a2d-9e41-544770c50c07/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 d8adde547f65fd2d15f021be8dd49ca1 1646d1f6b96dbbbc38035efc9239ac9c a3f0e8af241b1747cebc777ef634b29d 965670db1cc4ec98b861f44541a4a2db |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052561870618624 |
| spelling |
Roldán Correa, AlejandroValencia Henao, León AlexanderGallo, SandroColetti, Cristian F.Análisis MultivariadoAnálisis Numérico y Financiero: Matemáticas aplicadas para la industria2024-11-06T18:29:06Z2024-11-06T18:29:06Z2024Coletti, C.F., Gallo, S., Roldán-Correa, A. et al. Fluctuations of the Occupation Density for a Parking Process. J Stat Phys 191, 146 (2024). https://doi.org/10.1007/s10955-024-03336-20022-4715https://hdl.handle.net/10495/4322110.1007/s10955-024-03336-21572-9613ABSTRACT: Consider the following simple parking process on n := {−n,..., n}d , d ≥ 1: at each step, a site i is chosen at random in n and if i and all its nearest neighbor sites are empty, i is occupied. Once occupied, a site remains so forever. The process continues until all sites in n are either occupied or have at least one of their nearest neighbors occupied. The final configuration (occupancy) of n is called the jamming limit and is denoted by Xn . Ritchie (J Stat Phys 122:381–398, 2006) constructed a stationary random field on Zd obtained as a (thermodynamic) limit of the Xn ’s as n tends to infinity. As a consequence of his construction, he proved a strong law of large numbers for the proportion of occupied sites in the box n for the random field X. Here we prove the central limit theorem, the law of iterated logarithm, and a gaussian concentration inequality for the same statistics. A particular attention will be given to the case d = 1, in which we also obtain new asymptotic properties for the sequence Xn , n ≥ 1.Universidad de AntioquiaCOL0000532COL010637117 páginasapplication/pdfengSpringerNueva York, Estados Unidoshttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fluctuations of the Occupation Density for a Parking ProcessArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTeorema del límite centralCentral limit theoremDistribución asintótica (teoría de probabilidades)Asymptotic distribution (probability theory)Parking processJamming limitThermodynamic limitRandom sequential adsorptionConcentration inequalitiesJ. Stat. Phys.162146145191Journal of Statistical PhysicsUdeA 2023-58830RoR:03bp5hc83PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/91e55415-5499-462e-8c2d-ebf13c4e6ccd/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALRoldanAlejandro_2024_FluctuationsOccupationDensity.pdfRoldanAlejandro_2024_FluctuationsOccupationDensity.pdfArtículo de investigaciónapplication/pdf376428https://bibliotecadigital.udea.edu.co/bitstreams/c1f6aca7-7082-4212-8c6c-5e660d3b3b6c/downloadd8adde547f65fd2d15f021be8dd49ca1MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/be849d78-004d-41d7-a102-2db715606705/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADTEXTRoldanAlejandro_2024_FluctuationsOccupationDensity.pdf.txtRoldanAlejandro_2024_FluctuationsOccupationDensity.pdf.txtExtracted texttext/plain40716https://bibliotecadigital.udea.edu.co/bitstreams/fbf3543e-a8ed-49c4-92e8-66d91cb922d8/downloada3f0e8af241b1747cebc777ef634b29dMD54falseAnonymousREADTHUMBNAILRoldanAlejandro_2024_FluctuationsOccupationDensity.pdf.jpgRoldanAlejandro_2024_FluctuationsOccupationDensity.pdf.jpgGenerated Thumbnailimage/jpeg10497https://bibliotecadigital.udea.edu.co/bitstreams/66b82862-f9d5-4a2d-9e41-544770c50c07/download965670db1cc4ec98b861f44541a4a2dbMD55falseAnonymousREAD10495/43221oai:bibliotecadigital.udea.edu.co:10495/432212025-03-27 00:20:36.08http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
