Fluctuations of the Occupation Density for a Parking Process

ABSTRACT: Consider the following simple parking process on n := {−n,..., n}d , d ≥ 1: at each step, a site i is chosen at random in n and if i and all its nearest neighbor sites are empty, i is occupied. Once occupied, a site remains so forever. The process continues until all sites in n are either...

Full description

Autores:
Roldán Correa, Alejandro
Valencia Henao, León Alexander
Gallo, Sandro
Coletti, Cristian F.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/43221
Acceso en línea:
https://hdl.handle.net/10495/43221
Palabra clave:
Teorema del límite central
Central limit theorem
Distribución asintótica (teoría de probabilidades)
Asymptotic distribution (probability theory)
Parking process
Jamming limit
Thermodynamic limit
Random sequential adsorption
Concentration inequalities
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_4bf1214136ee84e1615742fc548b363a
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/43221
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Fluctuations of the Occupation Density for a Parking Process
title Fluctuations of the Occupation Density for a Parking Process
spellingShingle Fluctuations of the Occupation Density for a Parking Process
Teorema del límite central
Central limit theorem
Distribución asintótica (teoría de probabilidades)
Asymptotic distribution (probability theory)
Parking process
Jamming limit
Thermodynamic limit
Random sequential adsorption
Concentration inequalities
title_short Fluctuations of the Occupation Density for a Parking Process
title_full Fluctuations of the Occupation Density for a Parking Process
title_fullStr Fluctuations of the Occupation Density for a Parking Process
title_full_unstemmed Fluctuations of the Occupation Density for a Parking Process
title_sort Fluctuations of the Occupation Density for a Parking Process
dc.creator.fl_str_mv Roldán Correa, Alejandro
Valencia Henao, León Alexander
Gallo, Sandro
Coletti, Cristian F.
dc.contributor.author.none.fl_str_mv Roldán Correa, Alejandro
Valencia Henao, León Alexander
Gallo, Sandro
Coletti, Cristian F.
dc.contributor.researchgroup.spa.fl_str_mv Análisis Multivariado
Análisis Numérico y Financiero: Matemáticas aplicadas para la industria
dc.subject.lemb.none.fl_str_mv Teorema del límite central
Central limit theorem
Distribución asintótica (teoría de probabilidades)
Asymptotic distribution (probability theory)
topic Teorema del límite central
Central limit theorem
Distribución asintótica (teoría de probabilidades)
Asymptotic distribution (probability theory)
Parking process
Jamming limit
Thermodynamic limit
Random sequential adsorption
Concentration inequalities
dc.subject.proposal.spa.fl_str_mv Parking process
Jamming limit
Thermodynamic limit
Random sequential adsorption
Concentration inequalities
description ABSTRACT: Consider the following simple parking process on n := {−n,..., n}d , d ≥ 1: at each step, a site i is chosen at random in n and if i and all its nearest neighbor sites are empty, i is occupied. Once occupied, a site remains so forever. The process continues until all sites in n are either occupied or have at least one of their nearest neighbors occupied. The final configuration (occupancy) of n is called the jamming limit and is denoted by Xn . Ritchie (J Stat Phys 122:381–398, 2006) constructed a stationary random field on Zd obtained as a (thermodynamic) limit of the Xn ’s as n tends to infinity. As a consequence of his construction, he proved a strong law of large numbers for the proportion of occupied sites in the box n for the random field X. Here we prove the central limit theorem, the law of iterated logarithm, and a gaussian concentration inequality for the same statistics. A particular attention will be given to the case d = 1, in which we also obtain new asymptotic properties for the sequence Xn , n ≥ 1.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-06T18:29:06Z
dc.date.available.none.fl_str_mv 2024-11-06T18:29:06Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Coletti, C.F., Gallo, S., Roldán-Correa, A. et al. Fluctuations of the Occupation Density for a Parking Process. J Stat Phys 191, 146 (2024). https://doi.org/10.1007/s10955-024-03336-2
dc.identifier.issn.none.fl_str_mv 0022-4715
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/43221
dc.identifier.doi.none.fl_str_mv 10.1007/s10955-024-03336-2
dc.identifier.eissn.none.fl_str_mv 1572-9613
identifier_str_mv Coletti, C.F., Gallo, S., Roldán-Correa, A. et al. Fluctuations of the Occupation Density for a Parking Process. J Stat Phys 191, 146 (2024). https://doi.org/10.1007/s10955-024-03336-2
0022-4715
10.1007/s10955-024-03336-2
1572-9613
url https://hdl.handle.net/10495/43221
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv J. Stat. Phys.
dc.relation.citationendpage.spa.fl_str_mv 162
dc.relation.citationissue.spa.fl_str_mv 146
dc.relation.citationstartpage.spa.fl_str_mv 145
dc.relation.citationvolume.spa.fl_str_mv 191
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Statistical Physics
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 17 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer
dc.publisher.place.spa.fl_str_mv Nueva York, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/91e55415-5499-462e-8c2d-ebf13c4e6ccd/download
https://bibliotecadigital.udea.edu.co/bitstreams/c1f6aca7-7082-4212-8c6c-5e660d3b3b6c/download
https://bibliotecadigital.udea.edu.co/bitstreams/be849d78-004d-41d7-a102-2db715606705/download
https://bibliotecadigital.udea.edu.co/bitstreams/fbf3543e-a8ed-49c4-92e8-66d91cb922d8/download
https://bibliotecadigital.udea.edu.co/bitstreams/66b82862-f9d5-4a2d-9e41-544770c50c07/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
d8adde547f65fd2d15f021be8dd49ca1
1646d1f6b96dbbbc38035efc9239ac9c
a3f0e8af241b1747cebc777ef634b29d
965670db1cc4ec98b861f44541a4a2db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052561870618624
spelling Roldán Correa, AlejandroValencia Henao, León AlexanderGallo, SandroColetti, Cristian F.Análisis MultivariadoAnálisis Numérico y Financiero: Matemáticas aplicadas para la industria2024-11-06T18:29:06Z2024-11-06T18:29:06Z2024Coletti, C.F., Gallo, S., Roldán-Correa, A. et al. Fluctuations of the Occupation Density for a Parking Process. J Stat Phys 191, 146 (2024). https://doi.org/10.1007/s10955-024-03336-20022-4715https://hdl.handle.net/10495/4322110.1007/s10955-024-03336-21572-9613ABSTRACT: Consider the following simple parking process on n := {−n,..., n}d , d ≥ 1: at each step, a site i is chosen at random in n and if i and all its nearest neighbor sites are empty, i is occupied. Once occupied, a site remains so forever. The process continues until all sites in n are either occupied or have at least one of their nearest neighbors occupied. The final configuration (occupancy) of n is called the jamming limit and is denoted by Xn . Ritchie (J Stat Phys 122:381–398, 2006) constructed a stationary random field on Zd obtained as a (thermodynamic) limit of the Xn ’s as n tends to infinity. As a consequence of his construction, he proved a strong law of large numbers for the proportion of occupied sites in the box n for the random field X. Here we prove the central limit theorem, the law of iterated logarithm, and a gaussian concentration inequality for the same statistics. A particular attention will be given to the case d = 1, in which we also obtain new asymptotic properties for the sequence Xn , n ≥ 1.Universidad de AntioquiaCOL0000532COL010637117 páginasapplication/pdfengSpringerNueva York, Estados Unidoshttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fluctuations of the Occupation Density for a Parking ProcessArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTeorema del límite centralCentral limit theoremDistribución asintótica (teoría de probabilidades)Asymptotic distribution (probability theory)Parking processJamming limitThermodynamic limitRandom sequential adsorptionConcentration inequalitiesJ. Stat. Phys.162146145191Journal of Statistical PhysicsUdeA 2023-58830RoR:03bp5hc83PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/91e55415-5499-462e-8c2d-ebf13c4e6ccd/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALRoldanAlejandro_2024_FluctuationsOccupationDensity.pdfRoldanAlejandro_2024_FluctuationsOccupationDensity.pdfArtículo de investigaciónapplication/pdf376428https://bibliotecadigital.udea.edu.co/bitstreams/c1f6aca7-7082-4212-8c6c-5e660d3b3b6c/downloadd8adde547f65fd2d15f021be8dd49ca1MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/be849d78-004d-41d7-a102-2db715606705/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADTEXTRoldanAlejandro_2024_FluctuationsOccupationDensity.pdf.txtRoldanAlejandro_2024_FluctuationsOccupationDensity.pdf.txtExtracted texttext/plain40716https://bibliotecadigital.udea.edu.co/bitstreams/fbf3543e-a8ed-49c4-92e8-66d91cb922d8/downloada3f0e8af241b1747cebc777ef634b29dMD54falseAnonymousREADTHUMBNAILRoldanAlejandro_2024_FluctuationsOccupationDensity.pdf.jpgRoldanAlejandro_2024_FluctuationsOccupationDensity.pdf.jpgGenerated Thumbnailimage/jpeg10497https://bibliotecadigital.udea.edu.co/bitstreams/66b82862-f9d5-4a2d-9e41-544770c50c07/download965670db1cc4ec98b861f44541a4a2dbMD55falseAnonymousREAD10495/43221oai:bibliotecadigital.udea.edu.co:10495/432212025-03-27 00:20:36.08http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=