Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients

ABSTRACT: Currently, tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (Mtb) that primarily affects the lungs. The severity of active pulmonary TB (APTB) is an important determinant of transmission, morbidity, mortality, disease experience, and treatment outcomes. Sever...

Full description

Autores:
Barrera Robledo, Luis Fernando
Baena García, Andrés
Ocampo Martínez, Juan Camilo
Alzate Restrepo, Juan Fernando
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/43145
Acceso en línea:
https://hdl.handle.net/10495/43145
Palabra clave:
Mycobacterium tuberculosis
Índice de Severidad de la Enfermedad
Severity of Illness Index
Tuberculosis
Biomarcadores
Biomarkers
CHIT1
https://id.nlm.nih.gov/mesh/D009169
https://id.nlm.nih.gov/mesh/D012720
https://id.nlm.nih.gov/mesh/D014376
https://id.nlm.nih.gov/mesh/D015415
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_4bbe1f4039c42e6389328abec1f15c82
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/43145
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients
title Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients
spellingShingle Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients
Mycobacterium tuberculosis
Índice de Severidad de la Enfermedad
Severity of Illness Index
Tuberculosis
Biomarcadores
Biomarkers
CHIT1
https://id.nlm.nih.gov/mesh/D009169
https://id.nlm.nih.gov/mesh/D012720
https://id.nlm.nih.gov/mesh/D014376
https://id.nlm.nih.gov/mesh/D015415
title_short Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients
title_full Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients
title_fullStr Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients
title_full_unstemmed Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients
title_sort Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients
dc.creator.fl_str_mv Barrera Robledo, Luis Fernando
Baena García, Andrés
Ocampo Martínez, Juan Camilo
Alzate Restrepo, Juan Fernando
dc.contributor.author.none.fl_str_mv Barrera Robledo, Luis Fernando
Baena García, Andrés
Ocampo Martínez, Juan Camilo
Alzate Restrepo, Juan Fernando
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Inmunología Celular e Inmunogenética
dc.subject.decs.none.fl_str_mv Mycobacterium tuberculosis
Índice de Severidad de la Enfermedad
Severity of Illness Index
Tuberculosis
Biomarcadores
Biomarkers
topic Mycobacterium tuberculosis
Índice de Severidad de la Enfermedad
Severity of Illness Index
Tuberculosis
Biomarcadores
Biomarkers
CHIT1
https://id.nlm.nih.gov/mesh/D009169
https://id.nlm.nih.gov/mesh/D012720
https://id.nlm.nih.gov/mesh/D014376
https://id.nlm.nih.gov/mesh/D015415
dc.subject.proposal.spa.fl_str_mv CHIT1
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D009169
https://id.nlm.nih.gov/mesh/D012720
https://id.nlm.nih.gov/mesh/D014376
https://id.nlm.nih.gov/mesh/D015415
description ABSTRACT: Currently, tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (Mtb) that primarily affects the lungs. The severity of active pulmonary TB (APTB) is an important determinant of transmission, morbidity, mortality, disease experience, and treatment outcomes. Several publications have shown a high prevalence of disabling complications in individuals who have had severe APTB. Furthermore, certain strains of Mtb were associated with more severe disease outcomes. The use of biomarkers to predict severe APTB patients who are candidates for host-directed therapies, due to the high risk of developing post-tuberculous lung disease (PTLD), has not yet been implemented in the management of TB patients. We followed 108 individuals with APTB for 6 months using clinical tools, flow cytometry, and whole-genome sequencing (WGS). The median age of the study population was 26.5 years, and the frequency of women was 53.7%. In this study, we aimed to identify biomarkers that could help us to recognize individuals with APTB and improve our understanding of the immunopathology in these individuals. In this study, we conducted a follow-up on the treatment progress of 121 cases of APTB. The follow-up process commenced at the time of diagnosis (T0), continued with a control visit at 2 months (T2), and culminated in an exit appointment at 6 months following the completion of medical treatment (T6). People classified with severe APTB showed significantly higher levels of IL-6 (14.7 pg/mL; p < 0.05) compared to those with mild APTB (7.7 pg/mL) at T0. The AUCs for the ROC curves and the Matthews correlation coefficient values (MCC) demonstrate correlations ranging from moderate to very strong. We conducted WGS on 88 clinical isolates of Mtb, and our analysis revealed a total of 325 genes with insertions and deletions (Indels) within their coding regions when compared to the Mtb H37Rv reference genome. The pattern of association was found between serum levels of CHIT1 and the presence of Indels in Mtb isolates from patients with severe APTB. A key finding in our study was the high levels of CHIT1 in severe APTB patients. We identified a biomarker profile (IL-6, IFN-γ, IL-33, and CHIT1) that allows us to identify individuals with severe APTB, as well as the identification of a panel of polymorphisms (125) in clinical isolates of Mtb from individuals with severe APTB. Integrating these findings into a predictive model of severity would show promise for the management of APTB patients in the future, to guide host-directed therapy and reduce the prevalence of PTLD.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-11-04T21:02:12Z
dc.date.available.none.fl_str_mv 2024-11-04T21:02:12Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Ocampo JC, Alzate JF, Barrera LF, Baena A. Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients. Biomedicines. 2023 Nov 22;11(12):3110. doi: 10.3390/biomedicines11123110.
dc.identifier.issn.none.fl_str_mv 2227-9059
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/43145
dc.identifier.doi.none.fl_str_mv 10.3390/biomedicines11123110.
identifier_str_mv Ocampo JC, Alzate JF, Barrera LF, Baena A. Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients. Biomedicines. 2023 Nov 22;11(12):3110. doi: 10.3390/biomedicines11123110.
2227-9059
10.3390/biomedicines11123110.
url https://hdl.handle.net/10495/43145
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Biomedicines
dc.relation.citationendpage.spa.fl_str_mv 21
dc.relation.citationissue.spa.fl_str_mv 12
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournal.spa.fl_str_mv Biomedicines
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 21 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.spa.fl_str_mv Basilea, Suiza
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/3003ddce-0446-48e1-920b-b505b6abbefc/download
https://bibliotecadigital.udea.edu.co/bitstreams/edc6cff3-ba9d-4b70-a097-72b76b6326fe/download
https://bibliotecadigital.udea.edu.co/bitstreams/56d53a6a-c342-4975-978c-87441933fb71/download
https://bibliotecadigital.udea.edu.co/bitstreams/238a4f99-f5e9-44cb-93dd-ee8d5334327c/download
https://bibliotecadigital.udea.edu.co/bitstreams/adadbf36-8019-4872-b0b8-f432a2b42e0e/download
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
91c122c99dfe9fd8324f8a3ef08d154a
8a4605be74aa9ea9d79846c1fba20a33
dad2d8e531af998b2aae16139e08fff7
e16211b58509ea0005a8ab7ea1b4308b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052344090820608
spelling Barrera Robledo, Luis FernandoBaena García, AndrésOcampo Martínez, Juan CamiloAlzate Restrepo, Juan FernandoGrupo de Inmunología Celular e Inmunogenética2024-11-04T21:02:12Z2024-11-04T21:02:12Z2023Ocampo JC, Alzate JF, Barrera LF, Baena A. Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients. Biomedicines. 2023 Nov 22;11(12):3110. doi: 10.3390/biomedicines11123110.2227-9059https://hdl.handle.net/10495/4314510.3390/biomedicines11123110.ABSTRACT: Currently, tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (Mtb) that primarily affects the lungs. The severity of active pulmonary TB (APTB) is an important determinant of transmission, morbidity, mortality, disease experience, and treatment outcomes. Several publications have shown a high prevalence of disabling complications in individuals who have had severe APTB. Furthermore, certain strains of Mtb were associated with more severe disease outcomes. The use of biomarkers to predict severe APTB patients who are candidates for host-directed therapies, due to the high risk of developing post-tuberculous lung disease (PTLD), has not yet been implemented in the management of TB patients. We followed 108 individuals with APTB for 6 months using clinical tools, flow cytometry, and whole-genome sequencing (WGS). The median age of the study population was 26.5 years, and the frequency of women was 53.7%. In this study, we aimed to identify biomarkers that could help us to recognize individuals with APTB and improve our understanding of the immunopathology in these individuals. In this study, we conducted a follow-up on the treatment progress of 121 cases of APTB. The follow-up process commenced at the time of diagnosis (T0), continued with a control visit at 2 months (T2), and culminated in an exit appointment at 6 months following the completion of medical treatment (T6). People classified with severe APTB showed significantly higher levels of IL-6 (14.7 pg/mL; p < 0.05) compared to those with mild APTB (7.7 pg/mL) at T0. The AUCs for the ROC curves and the Matthews correlation coefficient values (MCC) demonstrate correlations ranging from moderate to very strong. We conducted WGS on 88 clinical isolates of Mtb, and our analysis revealed a total of 325 genes with insertions and deletions (Indels) within their coding regions when compared to the Mtb H37Rv reference genome. The pattern of association was found between serum levels of CHIT1 and the presence of Indels in Mtb isolates from patients with severe APTB. A key finding in our study was the high levels of CHIT1 in severe APTB patients. We identified a biomarker profile (IL-6, IFN-γ, IL-33, and CHIT1) that allows us to identify individuals with severe APTB, as well as the identification of a panel of polymorphisms (125) in clinical isolates of Mtb from individuals with severe APTB. Integrating these findings into a predictive model of severity would show promise for the management of APTB patients in the future, to guide host-directed therapy and reduce the prevalence of PTLD.Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODIColombia. Ministerio de Ciencia, Tecnología e Innovación - MinCienciasCOL000863921 páginasapplication/pdfengMDPIBasilea, Suizahttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB PatientsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionMycobacterium tuberculosisÍndice de Severidad de la EnfermedadSeverity of Illness IndexTuberculosisBiomarcadoresBiomarkersCHIT1https://id.nlm.nih.gov/mesh/D009169https://id.nlm.nih.gov/mesh/D012720https://id.nlm.nih.gov/mesh/D014376https://id.nlm.nih.gov/mesh/D015415Biomedicines2112111BiomedicinesCODI 2022-52290MinCiencias 111584467121MinCiencias 844-2019, 393-2020RoR:03bp5hc83RoR:03fd5ne08PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/3003ddce-0446-48e1-920b-b505b6abbefc/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADORIGINALBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdfBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdfArtículo de investigaciónapplication/pdf5554804https://bibliotecadigital.udea.edu.co/bitstreams/edc6cff3-ba9d-4b70-a097-72b76b6326fe/download91c122c99dfe9fd8324f8a3ef08d154aMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/56d53a6a-c342-4975-978c-87441933fb71/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdf.txtBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdf.txtExtracted texttext/plain97997https://bibliotecadigital.udea.edu.co/bitstreams/238a4f99-f5e9-44cb-93dd-ee8d5334327c/downloaddad2d8e531af998b2aae16139e08fff7MD54falseAnonymousREADTHUMBNAILBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdf.jpgBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdf.jpgGenerated Thumbnailimage/jpeg16087https://bibliotecadigital.udea.edu.co/bitstreams/adadbf36-8019-4872-b0b8-f432a2b42e0e/downloade16211b58509ea0005a8ab7ea1b4308bMD55falseAnonymousREAD10495/43145oai:bibliotecadigital.udea.edu.co:10495/431452025-03-26 20:54:14.037https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=