Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients
ABSTRACT: Currently, tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (Mtb) that primarily affects the lungs. The severity of active pulmonary TB (APTB) is an important determinant of transmission, morbidity, mortality, disease experience, and treatment outcomes. Sever...
- Autores:
-
Barrera Robledo, Luis Fernando
Baena García, Andrés
Ocampo Martínez, Juan Camilo
Alzate Restrepo, Juan Fernando
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/43145
- Acceso en línea:
- https://hdl.handle.net/10495/43145
- Palabra clave:
- Mycobacterium tuberculosis
Índice de Severidad de la Enfermedad
Severity of Illness Index
Tuberculosis
Biomarcadores
Biomarkers
CHIT1
https://id.nlm.nih.gov/mesh/D009169
https://id.nlm.nih.gov/mesh/D012720
https://id.nlm.nih.gov/mesh/D014376
https://id.nlm.nih.gov/mesh/D015415
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
| id |
UDEA2_4bbe1f4039c42e6389328abec1f15c82 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/43145 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients |
| title |
Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients |
| spellingShingle |
Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients Mycobacterium tuberculosis Índice de Severidad de la Enfermedad Severity of Illness Index Tuberculosis Biomarcadores Biomarkers CHIT1 https://id.nlm.nih.gov/mesh/D009169 https://id.nlm.nih.gov/mesh/D012720 https://id.nlm.nih.gov/mesh/D014376 https://id.nlm.nih.gov/mesh/D015415 |
| title_short |
Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients |
| title_full |
Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients |
| title_fullStr |
Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients |
| title_full_unstemmed |
Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients |
| title_sort |
Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients |
| dc.creator.fl_str_mv |
Barrera Robledo, Luis Fernando Baena García, Andrés Ocampo Martínez, Juan Camilo Alzate Restrepo, Juan Fernando |
| dc.contributor.author.none.fl_str_mv |
Barrera Robledo, Luis Fernando Baena García, Andrés Ocampo Martínez, Juan Camilo Alzate Restrepo, Juan Fernando |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Inmunología Celular e Inmunogenética |
| dc.subject.decs.none.fl_str_mv |
Mycobacterium tuberculosis Índice de Severidad de la Enfermedad Severity of Illness Index Tuberculosis Biomarcadores Biomarkers |
| topic |
Mycobacterium tuberculosis Índice de Severidad de la Enfermedad Severity of Illness Index Tuberculosis Biomarcadores Biomarkers CHIT1 https://id.nlm.nih.gov/mesh/D009169 https://id.nlm.nih.gov/mesh/D012720 https://id.nlm.nih.gov/mesh/D014376 https://id.nlm.nih.gov/mesh/D015415 |
| dc.subject.proposal.spa.fl_str_mv |
CHIT1 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D009169 https://id.nlm.nih.gov/mesh/D012720 https://id.nlm.nih.gov/mesh/D014376 https://id.nlm.nih.gov/mesh/D015415 |
| description |
ABSTRACT: Currently, tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (Mtb) that primarily affects the lungs. The severity of active pulmonary TB (APTB) is an important determinant of transmission, morbidity, mortality, disease experience, and treatment outcomes. Several publications have shown a high prevalence of disabling complications in individuals who have had severe APTB. Furthermore, certain strains of Mtb were associated with more severe disease outcomes. The use of biomarkers to predict severe APTB patients who are candidates for host-directed therapies, due to the high risk of developing post-tuberculous lung disease (PTLD), has not yet been implemented in the management of TB patients. We followed 108 individuals with APTB for 6 months using clinical tools, flow cytometry, and whole-genome sequencing (WGS). The median age of the study population was 26.5 years, and the frequency of women was 53.7%. In this study, we aimed to identify biomarkers that could help us to recognize individuals with APTB and improve our understanding of the immunopathology in these individuals. In this study, we conducted a follow-up on the treatment progress of 121 cases of APTB. The follow-up process commenced at the time of diagnosis (T0), continued with a control visit at 2 months (T2), and culminated in an exit appointment at 6 months following the completion of medical treatment (T6). People classified with severe APTB showed significantly higher levels of IL-6 (14.7 pg/mL; p < 0.05) compared to those with mild APTB (7.7 pg/mL) at T0. The AUCs for the ROC curves and the Matthews correlation coefficient values (MCC) demonstrate correlations ranging from moderate to very strong. We conducted WGS on 88 clinical isolates of Mtb, and our analysis revealed a total of 325 genes with insertions and deletions (Indels) within their coding regions when compared to the Mtb H37Rv reference genome. The pattern of association was found between serum levels of CHIT1 and the presence of Indels in Mtb isolates from patients with severe APTB. A key finding in our study was the high levels of CHIT1 in severe APTB patients. We identified a biomarker profile (IL-6, IFN-γ, IL-33, and CHIT1) that allows us to identify individuals with severe APTB, as well as the identification of a panel of polymorphisms (125) in clinical isolates of Mtb from individuals with severe APTB. Integrating these findings into a predictive model of severity would show promise for the management of APTB patients in the future, to guide host-directed therapy and reduce the prevalence of PTLD. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-11-04T21:02:12Z |
| dc.date.available.none.fl_str_mv |
2024-11-04T21:02:12Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Ocampo JC, Alzate JF, Barrera LF, Baena A. Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients. Biomedicines. 2023 Nov 22;11(12):3110. doi: 10.3390/biomedicines11123110. |
| dc.identifier.issn.none.fl_str_mv |
2227-9059 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/43145 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/biomedicines11123110. |
| identifier_str_mv |
Ocampo JC, Alzate JF, Barrera LF, Baena A. Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients. Biomedicines. 2023 Nov 22;11(12):3110. doi: 10.3390/biomedicines11123110. 2227-9059 10.3390/biomedicines11123110. |
| url |
https://hdl.handle.net/10495/43145 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Biomedicines |
| dc.relation.citationendpage.spa.fl_str_mv |
21 |
| dc.relation.citationissue.spa.fl_str_mv |
12 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
11 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Biomedicines |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
21 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
MDPI |
| dc.publisher.place.spa.fl_str_mv |
Basilea, Suiza |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/3003ddce-0446-48e1-920b-b505b6abbefc/download https://bibliotecadigital.udea.edu.co/bitstreams/edc6cff3-ba9d-4b70-a097-72b76b6326fe/download https://bibliotecadigital.udea.edu.co/bitstreams/56d53a6a-c342-4975-978c-87441933fb71/download https://bibliotecadigital.udea.edu.co/bitstreams/238a4f99-f5e9-44cb-93dd-ee8d5334327c/download https://bibliotecadigital.udea.edu.co/bitstreams/adadbf36-8019-4872-b0b8-f432a2b42e0e/download |
| bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 91c122c99dfe9fd8324f8a3ef08d154a 8a4605be74aa9ea9d79846c1fba20a33 dad2d8e531af998b2aae16139e08fff7 e16211b58509ea0005a8ab7ea1b4308b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052344090820608 |
| spelling |
Barrera Robledo, Luis FernandoBaena García, AndrésOcampo Martínez, Juan CamiloAlzate Restrepo, Juan FernandoGrupo de Inmunología Celular e Inmunogenética2024-11-04T21:02:12Z2024-11-04T21:02:12Z2023Ocampo JC, Alzate JF, Barrera LF, Baena A. Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients. Biomedicines. 2023 Nov 22;11(12):3110. doi: 10.3390/biomedicines11123110.2227-9059https://hdl.handle.net/10495/4314510.3390/biomedicines11123110.ABSTRACT: Currently, tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (Mtb) that primarily affects the lungs. The severity of active pulmonary TB (APTB) is an important determinant of transmission, morbidity, mortality, disease experience, and treatment outcomes. Several publications have shown a high prevalence of disabling complications in individuals who have had severe APTB. Furthermore, certain strains of Mtb were associated with more severe disease outcomes. The use of biomarkers to predict severe APTB patients who are candidates for host-directed therapies, due to the high risk of developing post-tuberculous lung disease (PTLD), has not yet been implemented in the management of TB patients. We followed 108 individuals with APTB for 6 months using clinical tools, flow cytometry, and whole-genome sequencing (WGS). The median age of the study population was 26.5 years, and the frequency of women was 53.7%. In this study, we aimed to identify biomarkers that could help us to recognize individuals with APTB and improve our understanding of the immunopathology in these individuals. In this study, we conducted a follow-up on the treatment progress of 121 cases of APTB. The follow-up process commenced at the time of diagnosis (T0), continued with a control visit at 2 months (T2), and culminated in an exit appointment at 6 months following the completion of medical treatment (T6). People classified with severe APTB showed significantly higher levels of IL-6 (14.7 pg/mL; p < 0.05) compared to those with mild APTB (7.7 pg/mL) at T0. The AUCs for the ROC curves and the Matthews correlation coefficient values (MCC) demonstrate correlations ranging from moderate to very strong. We conducted WGS on 88 clinical isolates of Mtb, and our analysis revealed a total of 325 genes with insertions and deletions (Indels) within their coding regions when compared to the Mtb H37Rv reference genome. The pattern of association was found between serum levels of CHIT1 and the presence of Indels in Mtb isolates from patients with severe APTB. A key finding in our study was the high levels of CHIT1 in severe APTB patients. We identified a biomarker profile (IL-6, IFN-γ, IL-33, and CHIT1) that allows us to identify individuals with severe APTB, as well as the identification of a panel of polymorphisms (125) in clinical isolates of Mtb from individuals with severe APTB. Integrating these findings into a predictive model of severity would show promise for the management of APTB patients in the future, to guide host-directed therapy and reduce the prevalence of PTLD.Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODIColombia. Ministerio de Ciencia, Tecnología e Innovación - MinCienciasCOL000863921 páginasapplication/pdfengMDPIBasilea, Suizahttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB PatientsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionMycobacterium tuberculosisÍndice de Severidad de la EnfermedadSeverity of Illness IndexTuberculosisBiomarcadoresBiomarkersCHIT1https://id.nlm.nih.gov/mesh/D009169https://id.nlm.nih.gov/mesh/D012720https://id.nlm.nih.gov/mesh/D014376https://id.nlm.nih.gov/mesh/D015415Biomedicines2112111BiomedicinesCODI 2022-52290MinCiencias 111584467121MinCiencias 844-2019, 393-2020RoR:03bp5hc83RoR:03fd5ne08PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/3003ddce-0446-48e1-920b-b505b6abbefc/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADORIGINALBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdfBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdfArtículo de investigaciónapplication/pdf5554804https://bibliotecadigital.udea.edu.co/bitstreams/edc6cff3-ba9d-4b70-a097-72b76b6326fe/download91c122c99dfe9fd8324f8a3ef08d154aMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/56d53a6a-c342-4975-978c-87441933fb71/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdf.txtBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdf.txtExtracted texttext/plain97997https://bibliotecadigital.udea.edu.co/bitstreams/238a4f99-f5e9-44cb-93dd-ee8d5334327c/downloaddad2d8e531af998b2aae16139e08fff7MD54falseAnonymousREADTHUMBNAILBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdf.jpgBaenaAndres_2023_Tuberculosis_Severity_Predictive.pdf.jpgGenerated Thumbnailimage/jpeg16087https://bibliotecadigital.udea.edu.co/bitstreams/adadbf36-8019-4872-b0b8-f432a2b42e0e/downloade16211b58509ea0005a8ab7ea1b4308bMD55falseAnonymousREAD10495/43145oai:bibliotecadigital.udea.edu.co:10495/431452025-03-26 20:54:14.037https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
