Modelo de próxima oferta para clientes de una entidad de crédito utilizando técnicas de aprendizaje automático

RESUMEN : En este proyecto, se aborda el desafío de aumentar la tasa de clientes impactados por ofertas comerciales en una entidad financiera de un 4% a un 25%. Mediante la aplicación de análisis de datos avanzado y modelado predictivo, se construye un modelo analítico para personalizar las ofertas...

Full description

Autores:
Henao Quintero, Sergio Andres
Tipo de recurso:
Tesis
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/35695
Acceso en línea:
https://hdl.handle.net/10495/35695
Palabra clave:
Aprendizaje automático (inteligencia artificial)
Machine learning
Aprendizaje supervisado (inteligencia automático)
Supervised learning (Machine learning)
Crédito
Perfilación del consumidor
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:RESUMEN : En este proyecto, se aborda el desafío de aumentar la tasa de clientes impactados por ofertas comerciales en una entidad financiera de un 4% a un 25%. Mediante la aplicación de análisis de datos avanzado y modelado predictivo, se construye un modelo analítico para personalizar las ofertas de productos financieros según las necesidades y preferencias de cada cliente. Se utiliza modelos de aprendizaje automático, específicamente Gradient Boosting, Random Forest y One vs Rest Classifier, para analizar patrones de comportamiento del cliente y predecir su respuesta a diferentes ofertas de productos. Para asegurar la calidad y representatividad de los datos de entrenamiento, se aplican varias técnicas de preprocesamiento de datos y balanceo de clases. Para evaluar la efectividad del modelo, se usan varias métricas de desempeño, incluyendo precisión, recall, F1_score y AUC. A través de esta investigación, se busca como demostrar como un enfoque de análisis de datos centrado en el cliente puede contribuir a mejorar la satisfacción del cliente, optimizar la eficacia de las campañas de marketing y, en última instancia, mejorar los resultados comerciales de la entidad financiera.