Lluvia antecedente efectiva: revisión literaria y aplicación en estudios de amenaza de deslizamientos. Trabajo de Grado
Los deslizamientos son fenómenos naturales cuya ocurrencia está estrechamente relacionada con los niveles de humedad en el suelo. Esta humedad se acumula no solo por la lluvia del día del evento, sino también por las precipitaciones registradas en los días o semanas previas. En este contexto, la llu...
- Autores:
-
Jimenez Giraldo, Hernan
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/48458
- Acceso en línea:
- https://hdl.handle.net/10495/48458
- Palabra clave:
- Lluvia
Rain
Humedad del suelo
Soil moisture
Fenómeno natural
Natural phenomena
http://aims.fao.org/aos/agrovoc/c_330740
http://vocabularies.unesco.org/thesaurus/concept1218
http://vocabularies.unesco.org/thesaurus/concept12055
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_44719343e99dc0537fa7e52fe34eb99c |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/48458 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Lluvia antecedente efectiva: revisión literaria y aplicación en estudios de amenaza de deslizamientos. Trabajo de Grado |
| title |
Lluvia antecedente efectiva: revisión literaria y aplicación en estudios de amenaza de deslizamientos. Trabajo de Grado |
| spellingShingle |
Lluvia antecedente efectiva: revisión literaria y aplicación en estudios de amenaza de deslizamientos. Trabajo de Grado Lluvia Rain Humedad del suelo Soil moisture Fenómeno natural Natural phenomena http://aims.fao.org/aos/agrovoc/c_330740 http://vocabularies.unesco.org/thesaurus/concept1218 http://vocabularies.unesco.org/thesaurus/concept12055 |
| title_short |
Lluvia antecedente efectiva: revisión literaria y aplicación en estudios de amenaza de deslizamientos. Trabajo de Grado |
| title_full |
Lluvia antecedente efectiva: revisión literaria y aplicación en estudios de amenaza de deslizamientos. Trabajo de Grado |
| title_fullStr |
Lluvia antecedente efectiva: revisión literaria y aplicación en estudios de amenaza de deslizamientos. Trabajo de Grado |
| title_full_unstemmed |
Lluvia antecedente efectiva: revisión literaria y aplicación en estudios de amenaza de deslizamientos. Trabajo de Grado |
| title_sort |
Lluvia antecedente efectiva: revisión literaria y aplicación en estudios de amenaza de deslizamientos. Trabajo de Grado |
| dc.creator.fl_str_mv |
Jimenez Giraldo, Hernan |
| dc.contributor.advisor.none.fl_str_mv |
Gómez García, Derly Estefanny |
| dc.contributor.author.none.fl_str_mv |
Jimenez Giraldo, Hernan |
| dc.subject.unesco.none.fl_str_mv |
Lluvia Rain Humedad del suelo Soil moisture |
| topic |
Lluvia Rain Humedad del suelo Soil moisture Fenómeno natural Natural phenomena http://aims.fao.org/aos/agrovoc/c_330740 http://vocabularies.unesco.org/thesaurus/concept1218 http://vocabularies.unesco.org/thesaurus/concept12055 |
| dc.subject.agrovoc.none.fl_str_mv |
Fenómeno natural Natural phenomena |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_330740 |
| dc.subject.unescouri.none.fl_str_mv |
http://vocabularies.unesco.org/thesaurus/concept1218 http://vocabularies.unesco.org/thesaurus/concept12055 |
| description |
Los deslizamientos son fenómenos naturales cuya ocurrencia está estrechamente relacionada con los niveles de humedad en el suelo. Esta humedad se acumula no solo por la lluvia del día del evento, sino también por las precipitaciones registradas en los días o semanas previas. En este contexto, la lluvia antecedente efectiva (AEP) se define como la fracción de lluvia que se infiltra y permanece en el suelo, excluyendo aquella que se evapora, es interceptada por la vegetación o escurre superficialmente. En consecuencia, la adecuada estimación de la AEP es fundamental para anticipar condiciones de saturación que puedan generar inestabilidad, especialmente en territorios con alta susceptibilidad, como Colombia, debido a su elevada pluviosidad, topografía montañosa y limitada disponibilidad de datos sobre humedad del suelo. Frente a esta problemática, el presente trabajo se enfocó en el análisis de metodologías utilizadas para estimar AEP, así como en la forma en que distintos autores la han aplicado para evaluar la amenaza de deslizamientos. Para ello, se llevó a cabo una revisión de literatura global, incluyendo artículos de revistas científicas indexadas, tesis universitarias y proyectos ingenieriles, donde inicialmente, se identificaron más de doscientos artículos, los cuales fueron filtrados con base en dos criterios: año de publicación (entre 2000 y 2025, ya que es una revisión literaria reciente) y claridad en la descripción del método utilizado para estimar la AEP, obteniendo finalmente cuarenta y seis artículos clave. Posteriormente, la información recopilada fue agrupada en trece metodologías diferentes, evidenciando que el API clásico, pese a tener casi sesenta años de antigüedad, continúa siendo ampliamente utilizado a nivel global. Asimismo, se evidenció que las metodologías más recientes no reemplazan este modelo, sino que lo redefinen mediante la optimización, modificación o calibración del factor de decaimiento “k”, manteniendo su estructura conceptual. Por lo tanto, esta evolución metodológica demuestra la vigencia del API como base fundamental para estimar AEP. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-28T15:36:48Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_7a1f |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/48458 |
| url |
https://hdl.handle.net/10495/48458 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Ali, S., Ghosh, N. C., & Singh, R. (2010). Rainfall-runoff simulation using a normalized antecedent precipitation index. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 55(2), 266–274. https://doi.org/10.1080/02626660903546175 Aparicio, J., Rodríguez, J. L., & Vázquez, J. A. (2000). Hidrología superficial y subterránea (2.ª ed.). Limusa Noriega. Aristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016). INFLUENCIA DE LA LLUVIA ANTECEDENTE Y LA CONDUCTIVIDAD HIDRÁULICA EN LA OCURRENCIA DE DESLIZAMIENTOS DETONADOS POR LLUVIAS UTILIZANDO EL MODELO SHIA_LANDSLIDE. Revista EIA, 26, 31–46. https://doi.org/10.24050/reia.v13i26.863 Banco Mundial. (2019). Resilience to disaster risk and climate change in Colombia. https://www.bancomundial.org/es/results/2023/03/16/resilience-to-disaster-risk-and climate-change-in-colombia Chang-wei, Z., Yan-xia, Z., Yi-feng, W., & Ping-cang, Z. (2015). Fractal Relation Between Precipitation and Sediment Yield and Calculation of Antecedent Effective Precipitation in Xiangxi River Watershed. Journal of Changjiang River Scientific Research Institute, 32(3), 121. https://doi.org/10.3969/J.ISSN.1001-5485.2015.03.024 Chik, L., Albrecht, D., & Kodikara, J. (2018). Modeling Failures in Water Mains Using the Minimum Monthly Antecedent Precipitation Index. Journal of Water Resources Planning and Management, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000926 144(4), 06018004. Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied Hydrology. McGraw-Hill. Descroix, L., Nouvelot, J. F., & Vauclin, M. (2002). Evaluation of an antecedent precipitation index to model runoff yield in the western Sierra Madre (North-west Mexico). Journal of Hydrology, 263(1–4), 114–130. https://doi.org/10.1016/S0022-1694(02)00047-1 Du, J., Fang, J., Xu, W., & Shi, P. (2013). Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stochastic Environmental Research and Risk Assessment, 27(2), 377–387. https://doi.org/10.1007/S00477-012-0589-6/METRICS Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227–252. https://doi.org/10.1016/J.EARSCIREV.2016.08.011 Ghosh, N. C., Jaiswal, R. K., & Ali, S. (2021). Normalized Antecedent Precipitation Index Based Model for Prediction of Runoff from Un-Gauged Catchments. Water Resources Management, 35(4), W/METRICS 1211–1230. https://doi.org/10.1007/S11269-021-02775 Glade, T., Crozier, M., & Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model.” Pure and Applied https://doi.org/10.1007/S000240050017 Gómez, D., Aristizábal, E., García, E. F., Marín, D., Valencia, S., & Vásquez, M. (2023). Landslides forecasting using satellite rainfall estimations and machine learning in the Colombian Andean region. Journal of South American Earth Sciences, 125, 104293. https://doi.org/10.1016/J.JSAMES.2023.104293 Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1–2), 42–66. https://doi.org/10.1016/J.EARSCIREV.2012.02.001 Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17. https://doi.org/10.1007/S10346-007-0112-1 Gwak, Y.-S., Kim, S.-J., Lee, E.-H., Hamm, S.-Y., Kim, S.-H., & Author, C. (2016). Soil Water Storage and Antecedent Precipitation Index at Gwangneung Humid-Forested Hillslope. Korean Journal of Agricultural and Forest Meteorology, 18(1), 30–41. https://doi.org/10.5532/KJAFM.2016.18.1.30 Heggen, R. J. (2001). Normalized Antecedent Precipitation Index. Journal of Hydrologic Engineering, 6(5), 377–381. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:5(377) Huang, R., & Li, W. (2011). Formation, distribution and risk control of landslides in China. Journal of Rock Mechanics and Geotechnical Engineering, 3(2), 97–116. https://doi.org/10.3724/SP.J.1235.2011.00097 Hui, B., Zhan-ping, W., Li, L., Tao, Z., Hui, B., Zhan-ping, W., Li, L., & Tao, Z. (2013). The application of the daily meteorological drought indicator based on standardized antecedent precipitation index in Guizhou. Journal of Yunnan University: Natural Sciences Edition, 2013, Vol. 35, Issue 5, Pages: 661-, 35(5), 661-. https://doi.org/10.7540/J.YNU.20120483 IDEAM. (2020). Informe anual sobre el estado del medio ambiente y los recursos naturales renovables en Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales. Jung, Y.-Y., Koh, D.-C., Han, H.-S., Kwon, H.-I., & Lim, E.-K. (2016). Estimation of Stream Discharge using Antecedent Precipitation Index Models in a Small Mountainous Forested Catchment: Upper Reach of Yongsucheon Stream, Gyeryongsan Mountain. Journal of Soil and Groundwater https://doi.org/10.7857/JSGE.2016.21.6.036 Konstantinos, N., & Antonakos, A. (2007). THE USE OF " ANTECEDENT PRECIPITATION INDEX " AND " DELAY FACTOR " TO ESTIMATE RUNOFF FROM RAINFALL; A CASE STUDY FROM EIGHT DRAINAGE BASINSACHAIA, PELOPONESSOS, GREECE. https://www.researchgate.net/publication/278683549_THE_USE_OF_ANTECEDENT_PRECIPITATION_INDEX_AND_DELAY_FACTOR_TO_ESTIMATE_RUNOFF_FROM_RAINFALL_A_CASE_STUDY_FROM_EIGHT_DRAINAGE_BASINS_ACHAIA_PELOPONESSOS_GREECE Li, J., Wang, Z., Wu, X., Xu, C. Y., Guo, S., & Chen, X. (2020). Toward Monitoring Short Term Droughts Using a Novel Daily Scale, Standardized Antecedent Precipitation Evapotranspiration Index. Journal of Hydrometeorology, 21(5), 891–908. https://doi.org/10.1175/JHM-D-19-0298.1 Li, X., Wei, Y., & Li, F. (2021). Optimality of antecedent precipitation index and its application. Journal of Hydrology, 595, 126027. https://doi.org/10.1016/J.JHYDROL.2021.126027 Liang, J., Hu, Z., Liu, S., Zhong, G., Zhen, Y., Makhinov, A. N., & Araruna, J. T. (2022). Residual-Oriented Optimization of Antecedent Precipitation Index and Its Impact on Flood Prediction Uncertainty. Water 2022, Vol. 14, Page 3222, 14(20), 3222. https://doi.org/10.3390/W14203222 Liang, X., Segoni, S., Fan, W., Yin, K., Deng, L., Xiao, T., Barbadori, F., & Casagli, N. (2025). Integration of effective antecedent rainfall to improve the performance of rainfall thresholds for landslide early warning in Wanzhou District, China. International Journal of Disaster Risk Reduction, 119, 105317. https://doi.org/10.1016/J.IJDRR.2025.105317 Linsley, K. (1967). Hidrología para Ingenieros. https://www.academia.edu/37765494/Hidrolog%C3%ADa_para_Ingenieros_LINSLEY_KOHLER_y_PAULHUS Mehaiguene, M., Touhari, F., & Zouidi, M. (2025). The role of the antecedent precipitation index on runoff of semi arid catchment (North-West Algeria). https://ojs.brazilianjournals.com.br/ojs/index.php/BJAER/article/view/76479/53186 Moraes, M. A. E. de, Filho, W. M. M., Mendes, R. M., Bortolozo, C. A., Metodiev, D., Andrade, M. R. M. de, Egas, H. M., Mendes, T. S. G., Pampuch, L. A., Moraes, M. A. E. de, Filho, W. M. M., Mendes, R. M., Bortolozo, C. A., Metodiev, D., Andrade, M. R. M. de, Egas, H. M., Mendes, T. S. G., & Pampuch, L. A. (2024). Antecedent Precipitation Index to Estimate Soil Moisture and Correlate as a Triggering Process in the Occurrence of Landslides. International Journal of Geosciences, 15(1), 70–86. https://doi.org/10.4236/IJG.2024.151006 Nguyen-Huy, T., Kath, J., Nagler, T., Khaung, Y., Su Aung, T. S., Mushtaq, S., Marcussen, T., & Stone, R. (2022). A satellite-based Standardized Antecedent Precipitation Index (SAPI) for mapping extreme rainfall risk in Myanmar. Remote Sensing Applications: Society and Environment, 26, 100733. https://doi.org/10.1016/J.RSASE.2022.100733 Odin, M. (2021). Deslizamiento de tierras en los Andes, sus conductores y sus consecuencias. - Ambiente Andino - Amazonico. https://andes-amazonia.ird.fr/erosion/deslizamiento de-tierras-en-los-andes-sus-conductores-y-sus-consecuencias/ Rahardjo, H., Nistor, M. M., Gofar, N., Satyanaga, A., Xiaosheng, Q., & Chui Yee, S. I. (2020). Spatial distribution, variation and trend of five-day antecedent rainfall in Singapore. Georisk, 14(3), 177–191. https://doi.org/10.1080/17499518.2019.1639196;JOURNAL:JOURNAL:NGRK20;WGROUP:STRING:PUBLICATION Sakamoto, Y., Haga, H., Igei, N., Fujita, M., & Nishida, K. (2006). STUDY ON UNSATURATED VERTICAL FLOW, ANTECEDENT PRECIPITATION INDEX AND DISCHARGE OF FOREST SLOPE ON THE BASIS OF WATER CONTENT OF SOIL. Schoener, G., & Stone, M. C. (2020). Monitoring soil moisture at the catchment scale – A novel approach combining antecedent precipitation index and radar-derived rainfall data. Journal of Hydrology, 589, 125155. https://doi.org/10.1016/J.JHYDROL.2020.125155 Seiler, R. A., Hayes, M., & Bressan, L. (2002). Using the standardized precipitation index for flood risk monitoring. International Journal of Climatology, 22(11), 1365–1376. https://doi.org/10.1002/JOC.799;REQUESTEDJOURNAL:JOURNAL:10970088;JOURNAL:JOURNAL:10970088A;WGROUP:STRING:PUBLICATION Sepúlveda, S. A., & Petley, D. N. (2015). Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Natural Hazards and Earth System Sciences, 15(8), 1821–1833. https://doi.org/10.5194/NHESS-15-1821-2015 SGC. (2022). Reporte anual sobre movimientos en masa y gestión del riesgo en Colombia. https://www2.sgc.gov.co/ProgramasDeInvestigacion/geoamenazas/Paginas/Inventario nacional-de-movimientos-en-masa-y-SIMMA.aspx Smith, H. G., Neverman, A. J., Betts, H., & Spiekermann, R. (2023). The influence of spatial patterns in rainfall on shallow landslides. Geomorphology, 437, 108795. https://doi.org/10.1016/J.GEOMORPH.2023.108795 UNGRD. (2021). Estrategia nacional para la reducción del riesgo de desastres en Colombia. https://portal.gestiondelriesgo.gov.co/ Valenzuela, P., Zêzere, J. L., Domínguez-Cuesta, M. J., & Mora García, M. A. (2019). Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain). Scopus, 16(7), 1285–1300. https://doi.org/10.1007/S10346-019-01170-2 Vente, C. (1964). Handbook of applied hydrology: a compendium of water-resources technology. Viessman, W., & Lewis, G. L. (1996). Text Book Title Introduction to hydrology Author(s). Water Science School. (2019). El Ciclo del Agua - The Water Cycle, Spanish | U.S. Geological Survey. https://www.usgs.gov/special-topics/water-scienceschool/science/el-ciclo-del-agua-water-cycle-spanish Xie, W. ping, & Yang, J. song. (2013). Assessment of Soil Water Content in Field with Antecedent Precipitation Index and Groundwater Depth in the Yangtze River Estuary. Journal of Integrative Agriculture, 12(4), 711–722. https://doi.org/10.1016/S20953119(13)60289-0 Zagyvai-Kiss, K. A., Gribovszki, Z., Kalicz, P., Zagyvai-Kiss, K. A., Gribovszki, Z., & Kalicz, P. (2018). Estimation of moisture content of forest litter using the Antecedent Precipitation Index. EGUGA, 20, 7500. https://ui.adsabs.harvard.edu/abs/2018EGUGA..20.7500Z/abstract Zhang, S., Lei, X., Yang, H., Hu, K., Ma, J., Liu, D., & Wei, F. (2024). Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China. Hydrology and Earth System Sciences, 28(11), 2343–2355. https://doi.org/10.5194/HESS-28-2343-2024 Zhao, B., Dai, Q., Han, D., Dai, H., Mao, J., Zhuo, L., & Rong, G. (2019). Estimation of soil moisture using modified Antecedent Precipitation Index 1 with application in landslide predictions. https://doi.org/10.1007/s10346-019 |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
54 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Ingeniería Civil |
| dc.publisher.place.none.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
| dc.publisher.branch.none.fl_str_mv |
Campus Medellín - Ciudad Universitaria |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/3c1ffec1-4975-4b15-bc04-902f727df07e/download https://bibliotecadigital.udea.edu.co/bitstreams/7095ed80-853a-4bbe-97ef-66339cf964ba/download https://bibliotecadigital.udea.edu.co/bitstreams/8757dc92-0066-4efd-b6b1-76ba7288f92e/download https://bibliotecadigital.udea.edu.co/bitstreams/7ccf0a03-be4f-4ce1-b8dc-04fe61e21e67/download https://bibliotecadigital.udea.edu.co/bitstreams/8762d4e8-c28d-4ad8-9234-1f2d08b2debd/download |
| bitstream.checksum.fl_str_mv |
d3a1d4396cc37b5be710a62db356e399 b76e7a76e24cf2f94b3ce0ae5ed275d0 5643bfd9bcf29d560eeec56d584edaa9 7635984f2d1b1f4259dc03b8fec034b5 ad9e38c7cb346e16d1502630b492c33a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052422981484544 |
| spelling |
Gómez García, Derly EstefannyJimenez Giraldo, Hernan2025-11-28T15:36:48Z2025https://hdl.handle.net/10495/48458Los deslizamientos son fenómenos naturales cuya ocurrencia está estrechamente relacionada con los niveles de humedad en el suelo. Esta humedad se acumula no solo por la lluvia del día del evento, sino también por las precipitaciones registradas en los días o semanas previas. En este contexto, la lluvia antecedente efectiva (AEP) se define como la fracción de lluvia que se infiltra y permanece en el suelo, excluyendo aquella que se evapora, es interceptada por la vegetación o escurre superficialmente. En consecuencia, la adecuada estimación de la AEP es fundamental para anticipar condiciones de saturación que puedan generar inestabilidad, especialmente en territorios con alta susceptibilidad, como Colombia, debido a su elevada pluviosidad, topografía montañosa y limitada disponibilidad de datos sobre humedad del suelo. Frente a esta problemática, el presente trabajo se enfocó en el análisis de metodologías utilizadas para estimar AEP, así como en la forma en que distintos autores la han aplicado para evaluar la amenaza de deslizamientos. Para ello, se llevó a cabo una revisión de literatura global, incluyendo artículos de revistas científicas indexadas, tesis universitarias y proyectos ingenieriles, donde inicialmente, se identificaron más de doscientos artículos, los cuales fueron filtrados con base en dos criterios: año de publicación (entre 2000 y 2025, ya que es una revisión literaria reciente) y claridad en la descripción del método utilizado para estimar la AEP, obteniendo finalmente cuarenta y seis artículos clave. Posteriormente, la información recopilada fue agrupada en trece metodologías diferentes, evidenciando que el API clásico, pese a tener casi sesenta años de antigüedad, continúa siendo ampliamente utilizado a nivel global. Asimismo, se evidenció que las metodologías más recientes no reemplazan este modelo, sino que lo redefinen mediante la optimización, modificación o calibración del factor de decaimiento “k”, manteniendo su estructura conceptual. Por lo tanto, esta evolución metodológica demuestra la vigencia del API como base fundamental para estimar AEP.Landslides are natural hazards whose occurrence is closely linked to soil moisture levels. This moisture accumulates not only from rainfall on the day of the event, but also from precipitation recorded during the days or weeks prior. In this context, effective antecedent precipitation (AEP) is defined as the fraction of water that infiltrates and remains in the soil, excluding the portion that evaporates, is intercepted by vegetation, or flows off as surface runoff. Accordingly, accurate estimation of AEP is essential to anticipate soil saturation conditions that may lead to slope instability, particularly in highly susceptible regions such as Colombia, characterized by high rainfall, mountainous topography, and limited availability of soil moisture data. To address this issue, the present study focused on analyzing the methodologies used to estimate AEP, as well as how various authors have applied them to assess landslide hazard. A global literature review was conducted, including indexed scientific articles, university theses, and engineering projects. Initially, over two hundred documents were identified and then filtered based on two criteria: year of publication (between 2000 and 2025, as it is a recent review) and clarity in the description of the method used to estimate AEP, resulting in a final selection of fourty six key articles. The collected information was subsequently grouped into thirteen different methodologies, revealing that the classical API, despite being nearly sixty years old, remains widely used worldwide. Furthermore, it was observed that recent methodologies do not replace the original model but rather refine it through optimization, modification, or calibration of the decay factor “k”, while maintaining its conceptual structure. This methodological evolution highlights the enduring relevance of the API as a fundamental tool for estimating AEP.PregradoIngeniero Civil54 páginasapplication/pdfspaUniversidad de AntioquiaIngeniería CivilMedellín, ColombiaFacultad de IngenieríaCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Lluvia antecedente efectiva: revisión literaria y aplicación en estudios de amenaza de deslizamientos. Trabajo de GradoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftAli, S., Ghosh, N. C., & Singh, R. (2010). Rainfall-runoff simulation using a normalized antecedent precipitation index. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 55(2), 266–274. https://doi.org/10.1080/02626660903546175Aparicio, J., Rodríguez, J. L., & Vázquez, J. A. (2000). Hidrología superficial y subterránea (2.ª ed.). Limusa Noriega.Aristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016). INFLUENCIA DE LA LLUVIA ANTECEDENTE Y LA CONDUCTIVIDAD HIDRÁULICA EN LA OCURRENCIA DE DESLIZAMIENTOS DETONADOS POR LLUVIAS UTILIZANDO EL MODELO SHIA_LANDSLIDE. Revista EIA, 26, 31–46. https://doi.org/10.24050/reia.v13i26.863Banco Mundial. (2019). Resilience to disaster risk and climate change in Colombia. https://www.bancomundial.org/es/results/2023/03/16/resilience-to-disaster-risk-and climate-change-in-colombiaChang-wei, Z., Yan-xia, Z., Yi-feng, W., & Ping-cang, Z. (2015). Fractal Relation Between Precipitation and Sediment Yield and Calculation of Antecedent Effective Precipitation in Xiangxi River Watershed. Journal of Changjiang River Scientific Research Institute, 32(3), 121. https://doi.org/10.3969/J.ISSN.1001-5485.2015.03.024Chik, L., Albrecht, D., & Kodikara, J. (2018). Modeling Failures in Water Mains Using the Minimum Monthly Antecedent Precipitation Index. Journal of Water Resources Planning and Management, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000926 144(4), 06018004.Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied Hydrology. McGraw-Hill.Descroix, L., Nouvelot, J. F., & Vauclin, M. (2002). Evaluation of an antecedent precipitation index to model runoff yield in the western Sierra Madre (North-west Mexico). Journal of Hydrology, 263(1–4), 114–130. https://doi.org/10.1016/S0022-1694(02)00047-1Du, J., Fang, J., Xu, W., & Shi, P. (2013). Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stochastic Environmental Research and Risk Assessment, 27(2), 377–387. https://doi.org/10.1007/S00477-012-0589-6/METRICSGariano, S. L., & Guzzetti, F. (2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227–252. https://doi.org/10.1016/J.EARSCIREV.2016.08.011Ghosh, N. C., Jaiswal, R. K., & Ali, S. (2021). Normalized Antecedent Precipitation Index Based Model for Prediction of Runoff from Un-Gauged Catchments. Water Resources Management, 35(4), W/METRICS 1211–1230. https://doi.org/10.1007/S11269-021-02775Glade, T., Crozier, M., & Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model.” Pure and Applied https://doi.org/10.1007/S000240050017Gómez, D., Aristizábal, E., García, E. F., Marín, D., Valencia, S., & Vásquez, M. (2023). Landslides forecasting using satellite rainfall estimations and machine learning in the Colombian Andean region. Journal of South American Earth Sciences, 125, 104293. https://doi.org/10.1016/J.JSAMES.2023.104293Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1–2), 42–66. https://doi.org/10.1016/J.EARSCIREV.2012.02.001Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17. https://doi.org/10.1007/S10346-007-0112-1Gwak, Y.-S., Kim, S.-J., Lee, E.-H., Hamm, S.-Y., Kim, S.-H., & Author, C. (2016). Soil Water Storage and Antecedent Precipitation Index at Gwangneung Humid-Forested Hillslope. Korean Journal of Agricultural and Forest Meteorology, 18(1), 30–41. https://doi.org/10.5532/KJAFM.2016.18.1.30Heggen, R. J. (2001). Normalized Antecedent Precipitation Index. Journal of Hydrologic Engineering, 6(5), 377–381. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:5(377)Huang, R., & Li, W. (2011). Formation, distribution and risk control of landslides in China. Journal of Rock Mechanics and Geotechnical Engineering, 3(2), 97–116. https://doi.org/10.3724/SP.J.1235.2011.00097Hui, B., Zhan-ping, W., Li, L., Tao, Z., Hui, B., Zhan-ping, W., Li, L., & Tao, Z. (2013). The application of the daily meteorological drought indicator based on standardized antecedent precipitation index in Guizhou. Journal of Yunnan University: Natural Sciences Edition, 2013, Vol. 35, Issue 5, Pages: 661-, 35(5), 661-. https://doi.org/10.7540/J.YNU.20120483IDEAM. (2020). Informe anual sobre el estado del medio ambiente y los recursos naturales renovables en Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales.Jung, Y.-Y., Koh, D.-C., Han, H.-S., Kwon, H.-I., & Lim, E.-K. (2016). Estimation of Stream Discharge using Antecedent Precipitation Index Models in a Small Mountainous Forested Catchment: Upper Reach of Yongsucheon Stream, Gyeryongsan Mountain. Journal of Soil and Groundwater https://doi.org/10.7857/JSGE.2016.21.6.036Konstantinos, N., & Antonakos, A. (2007). THE USE OF " ANTECEDENT PRECIPITATION INDEX " AND " DELAY FACTOR " TO ESTIMATE RUNOFF FROM RAINFALL; A CASE STUDY FROM EIGHT DRAINAGE BASINSACHAIA, PELOPONESSOS, GREECE. https://www.researchgate.net/publication/278683549_THE_USE_OF_ANTECEDENT_PRECIPITATION_INDEX_AND_DELAY_FACTOR_TO_ESTIMATE_RUNOFF_FROM_RAINFALL_A_CASE_STUDY_FROM_EIGHT_DRAINAGE_BASINS_ACHAIA_PELOPONESSOS_GREECELi, J., Wang, Z., Wu, X., Xu, C. Y., Guo, S., & Chen, X. (2020). Toward Monitoring Short Term Droughts Using a Novel Daily Scale, Standardized Antecedent Precipitation Evapotranspiration Index. Journal of Hydrometeorology, 21(5), 891–908. https://doi.org/10.1175/JHM-D-19-0298.1Li, X., Wei, Y., & Li, F. (2021). Optimality of antecedent precipitation index and its application. Journal of Hydrology, 595, 126027. https://doi.org/10.1016/J.JHYDROL.2021.126027Liang, J., Hu, Z., Liu, S., Zhong, G., Zhen, Y., Makhinov, A. N., & Araruna, J. T. (2022). Residual-Oriented Optimization of Antecedent Precipitation Index and Its Impact on Flood Prediction Uncertainty. Water 2022, Vol. 14, Page 3222, 14(20), 3222. https://doi.org/10.3390/W14203222Liang, X., Segoni, S., Fan, W., Yin, K., Deng, L., Xiao, T., Barbadori, F., & Casagli, N. (2025). Integration of effective antecedent rainfall to improve the performance of rainfall thresholds for landslide early warning in Wanzhou District, China. International Journal of Disaster Risk Reduction, 119, 105317. https://doi.org/10.1016/J.IJDRR.2025.105317Linsley, K. (1967). Hidrología para Ingenieros. https://www.academia.edu/37765494/Hidrolog%C3%ADa_para_Ingenieros_LINSLEY_KOHLER_y_PAULHUSMehaiguene, M., Touhari, F., & Zouidi, M. (2025). The role of the antecedent precipitation index on runoff of semi arid catchment (North-West Algeria). https://ojs.brazilianjournals.com.br/ojs/index.php/BJAER/article/view/76479/53186Moraes, M. A. E. de, Filho, W. M. M., Mendes, R. M., Bortolozo, C. A., Metodiev, D., Andrade, M. R. M. de, Egas, H. M., Mendes, T. S. G., Pampuch, L. A., Moraes, M. A. E. de, Filho, W. M. M., Mendes, R. M., Bortolozo, C. A., Metodiev, D., Andrade, M. R. M. de, Egas, H. M., Mendes, T. S. G., & Pampuch, L. A. (2024). Antecedent Precipitation Index to Estimate Soil Moisture and Correlate as a Triggering Process in the Occurrence of Landslides. International Journal of Geosciences, 15(1), 70–86. https://doi.org/10.4236/IJG.2024.151006Nguyen-Huy, T., Kath, J., Nagler, T., Khaung, Y., Su Aung, T. S., Mushtaq, S., Marcussen, T., & Stone, R. (2022). A satellite-based Standardized Antecedent Precipitation Index (SAPI) for mapping extreme rainfall risk in Myanmar. Remote Sensing Applications: Society and Environment, 26, 100733. https://doi.org/10.1016/J.RSASE.2022.100733Odin, M. (2021). Deslizamiento de tierras en los Andes, sus conductores y sus consecuencias. - Ambiente Andino - Amazonico. https://andes-amazonia.ird.fr/erosion/deslizamiento de-tierras-en-los-andes-sus-conductores-y-sus-consecuencias/Rahardjo, H., Nistor, M. M., Gofar, N., Satyanaga, A., Xiaosheng, Q., & Chui Yee, S. I. (2020). Spatial distribution, variation and trend of five-day antecedent rainfall in Singapore. Georisk, 14(3), 177–191. https://doi.org/10.1080/17499518.2019.1639196;JOURNAL:JOURNAL:NGRK20;WGROUP:STRING:PUBLICATIONSakamoto, Y., Haga, H., Igei, N., Fujita, M., & Nishida, K. (2006). STUDY ON UNSATURATED VERTICAL FLOW, ANTECEDENT PRECIPITATION INDEX AND DISCHARGE OF FOREST SLOPE ON THE BASIS OF WATER CONTENT OF SOIL.Schoener, G., & Stone, M. C. (2020). Monitoring soil moisture at the catchment scale – A novel approach combining antecedent precipitation index and radar-derived rainfall data. Journal of Hydrology, 589, 125155. https://doi.org/10.1016/J.JHYDROL.2020.125155Seiler, R. A., Hayes, M., & Bressan, L. (2002). Using the standardized precipitation index for flood risk monitoring. International Journal of Climatology, 22(11), 1365–1376. https://doi.org/10.1002/JOC.799;REQUESTEDJOURNAL:JOURNAL:10970088;JOURNAL:JOURNAL:10970088A;WGROUP:STRING:PUBLICATIONSepúlveda, S. A., & Petley, D. N. (2015). Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Natural Hazards and Earth System Sciences, 15(8), 1821–1833. https://doi.org/10.5194/NHESS-15-1821-2015SGC. (2022). Reporte anual sobre movimientos en masa y gestión del riesgo en Colombia. https://www2.sgc.gov.co/ProgramasDeInvestigacion/geoamenazas/Paginas/Inventario nacional-de-movimientos-en-masa-y-SIMMA.aspxSmith, H. G., Neverman, A. J., Betts, H., & Spiekermann, R. (2023). The influence of spatial patterns in rainfall on shallow landslides. Geomorphology, 437, 108795. https://doi.org/10.1016/J.GEOMORPH.2023.108795UNGRD. (2021). Estrategia nacional para la reducción del riesgo de desastres en Colombia. https://portal.gestiondelriesgo.gov.co/Valenzuela, P., Zêzere, J. L., Domínguez-Cuesta, M. J., & Mora García, M. A. (2019). Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain). Scopus, 16(7), 1285–1300. https://doi.org/10.1007/S10346-019-01170-2Vente, C. (1964). Handbook of applied hydrology: a compendium of water-resources technology.Viessman, W., & Lewis, G. L. (1996). Text Book Title Introduction to hydrology Author(s).Water Science School. (2019). El Ciclo del Agua - The Water Cycle, Spanish | U.S. Geological Survey. https://www.usgs.gov/special-topics/water-scienceschool/science/el-ciclo-del-agua-water-cycle-spanishXie, W. ping, & Yang, J. song. (2013). Assessment of Soil Water Content in Field with Antecedent Precipitation Index and Groundwater Depth in the Yangtze River Estuary. Journal of Integrative Agriculture, 12(4), 711–722. https://doi.org/10.1016/S20953119(13)60289-0Zagyvai-Kiss, K. A., Gribovszki, Z., Kalicz, P., Zagyvai-Kiss, K. A., Gribovszki, Z., & Kalicz, P. (2018). Estimation of moisture content of forest litter using the Antecedent Precipitation Index. EGUGA, 20, 7500. https://ui.adsabs.harvard.edu/abs/2018EGUGA..20.7500Z/abstractZhang, S., Lei, X., Yang, H., Hu, K., Ma, J., Liu, D., & Wei, F. (2024). Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China. Hydrology and Earth System Sciences, 28(11), 2343–2355. https://doi.org/10.5194/HESS-28-2343-2024Zhao, B., Dai, Q., Han, D., Dai, H., Mao, J., Zhuo, L., & Rong, G. (2019). Estimation of soil moisture using modified Antecedent Precipitation Index 1 with application in landslide predictions. https://doi.org/10.1007/s10346-019LluviaRainHumedad del sueloSoil moistureFenómeno naturalNatural phenomenahttp://aims.fao.org/aos/agrovoc/c_330740http://vocabularies.unesco.org/thesaurus/concept1218http://vocabularies.unesco.org/thesaurus/concept12055PublicationORIGINALJimenezHernan_2025_LluviaAntecedenteEfectiva.pdfJimenezHernan_2025_LluviaAntecedenteEfectiva.pdfTrabajo de grado de pregradoapplication/pdf1212090https://bibliotecadigital.udea.edu.co/bitstreams/3c1ffec1-4975-4b15-bc04-902f727df07e/downloadd3a1d4396cc37b5be710a62db356e399MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/7095ed80-853a-4bbe-97ef-66339cf964ba/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD54falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/8757dc92-0066-4efd-b6b1-76ba7288f92e/download5643bfd9bcf29d560eeec56d584edaa9MD55falseAnonymousREADTEXTJimenezHernan_2025_LluviaAntecedenteEfectiva.pdf.txtJimenezHernan_2025_LluviaAntecedenteEfectiva.pdf.txtExtracted texttext/plain98949https://bibliotecadigital.udea.edu.co/bitstreams/7ccf0a03-be4f-4ce1-b8dc-04fe61e21e67/download7635984f2d1b1f4259dc03b8fec034b5MD56falseAnonymousREADTHUMBNAILJimenezHernan_2025_LluviaAntecedenteEfectiva.pdf.jpgJimenezHernan_2025_LluviaAntecedenteEfectiva.pdf.jpgGenerated Thumbnailimage/jpeg6459https://bibliotecadigital.udea.edu.co/bitstreams/8762d4e8-c28d-4ad8-9234-1f2d08b2debd/downloadad9e38c7cb346e16d1502630b492c33aMD57falseAnonymousREAD10495/48458oai:bibliotecadigital.udea.edu.co:10495/484582025-11-29 04:07:38.655http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
